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Foreword

VIRGIL GLIGOR (CARNEGIE MELLON UNIVERSITY)

Despite having worked with Adrian Perrig for a few years at Carnegie Mellon
University’s CyLab, where he embarked on the task of developing a secure
architecture for the Internet, I had had no in-depth exposure to SCION until I
attended a presentation he gave at Singapore Management University in late
2010. Entitled “SCI-FI: Secure Communication Infrastructure for a Future
Internet,” his talk described the early project that was to become SCION. The
audience reaction was predictable and all too familiar: you can’t change the
Internet; its foundation is immutable!

But in fact it had been clear for a long time that the Internet design had
to change, as security cracks had gradually been appearing in its foundation
since its early days. By the mid-1980s, it was obvious that the denial-of-
service problem was not effectively addressed by Internet protocols. By the
mid-90s, it was clear that BGP was prone to cascading instability, and by
the mid-2000s distributed denial of service had become a predictable Internet
“feature.” Other security issues arose, such as prefix hijacking, IP source address
spoofing, and packet-content alteration. Even when cryptographic protocols,
such as SSL/TLS, were finally applied in response to e-commerce pressure,
their worldwide deployment was more an exception than the rule. Besides, the
public-key infrastructure (PKI) supporting SSL/TLS continues to be extremely
fragile. As the Internet has expanded in size and use, security problems have
become increasingly severe: both organized crime and nation states have started
to launch massive attacks for economic or political gain.

Despite repeated wake-up calls for Internet redesign, the response has gener-
ally been something of a “boiling frogs” reaction: the severity of the problems
has continued to increase relentlessly, but perception of the enormous effort re-
quired to solve them has blocked, frustrated and foiled any impulse for redesign
from ground up. Over the past decade, it has become clear that security is a
fundamental problem of Internet design, but it remains a secondary concern. So
against that background, the audience reaction to Adrian Perrig’s 2010 SCI-FI
presentation in Singapore was only to be expected.

Since my first exposure to SCION, I have been impressed with several of
its innovative ideas and new properties. For instance, the concept of isolation

X1
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domains provides control-plane protection and simplifies construction of PKI
infrastructures due to the natural scoping of trust roots. (Although a concept
similar to that of isolation domains was considered for the initial Internet design,
the focus in that early phase was on getting the network to function at scale
before introducing hierarchical decomposition mechanisms.) SCION’s con-
cepts of transparency and control, which weave through the entire architecture,
result in many desirable properties, e.g., both high-performance and multipath
communication for hosts. Also, cryptographically protected packet-carried
forwarding state brings forwarding-path authorization without incurring any
router-state cost. SCION’s architecture integrates these concepts seamlessly
into a coherent secure system.

This book offers a fascinating view of both the high-level concepts that drive
SCION’s design and its implementation, and it leads the reader to draw some
surprising new conclusions.

Contrary to the common belief that security causes a loss of performance,
several SCION operations are efficient despite performing cryptographic opera-
tions; e.g., SCION packet forwarding can be faster and require less energy than
IP forwarding. This suggests that redesigning the Internet can be rewarding in
more areas than security. I am not aware of any other project that has gone so
deeply and broadly in redesigning an entire secure Internet architecture.

The SCION project contradicts another widely held opinion in demonstrating
that deployment of a new Internet architecture at scale is in fact possible.
This book illustrates the basic ingredients of deployment success: SCION has
provided a multitude of incentives for ISPs and end domains, so that local
deployment can already provide benefits to early adopters. The book also
describes some of SCION’s secret deployment sauce: keep the updates of the
current routing infrastructure of both ISPs and end domains to a minimum,
and reuse the existing intra-domain communication to the maximum extent. It
should not be surprising that (e.g., Swiss) ISPs have already found it possible
to deploy SCION routers in their core infrastructure and develop new services
on it.

Contrary to another common belief, a single Internet architecture can en-
able integrated defenses against multiple types of attacks, as opposed to one
which requires piecemeal solutions. In my opinion, the SCION architecture
is unique in this sense, and this book illustrates the fact through the solutions
it describes to long-standing problems. For example, SCION provides these
unique properties:

* Global security without any global root of trust. This implies that a global

“kill switch,” an unavoidable feature of other secure network architectures,
is not possible in SCION.

* Control-plane functions for secure path withdrawals and control messages.
Altheugh.any.networkseansalways cryptographically sign messages in an
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attempt to achieve secure operation, SCION secures the control plane in
a very efficient way while enabling high-speed router operation.

* Global resource allocation without requiring per-flow or per-computation
fairness mechanisms. This stands in contrast to the current Internet
design, in which these mechanisms enable massive DDoS attacks by
commercially available botnets. The book shows how SCION Ilever-
ages its global resource allocation architecture to offer a range of DDoS
countermeasures.

* Practical multipath architecture without having to rely on multiple com-
munication media and heterogeneous routing interfaces; e.g., cellular
or WiFi connection on cell phones. SCION is currently the only ar-
chitecture I am aware of that provides general homogeneous multipath
communication.

* A robust TLS PKI design with a very limited attack surface; i.e., several
independent entities need to be compromised for an attack to be launched.
In contrast, the current TLS PKI has a huge attack surface; e.g., if a single
key is compromised of the thousand or more that are trusted to sign
domain certificates, an adversary can compromise any TLS-protected
channel.

So can the Internet be changed and secured from the ground up? This book
provides a beacon of hope, proposing that the seemingly unsolvable problem
of changing the Internet can in fact be solved. With the open-source SCION
implementation and a readily available testbed, researchers can experiment on
a firmer network foundation and develop solutions to today’s pressing security
problems. It is only through hands-on experiments on common platforms
like SCION that we can build a new Internet, one that we can rely on with
confidence. Let’s embrace it!
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ADRIAN PERRIG

The SCION project started in Summer 2009 at Carnegie Mellon University
(CMU), when we began meeting weekly with Haowen Chan, Hsu-Chun Hsiao,
and Xin Zhang to consider what a secure inter-domain Internet architecture
would look like if we could start from a clean slate. The goal was to create an
architecture that offered high availability and security for basic point-to-point
communication — which other architectures that provide content-centric or
mobility-centric properties could build upon.

The project was arduous, because for every approach we came up with, we
saw at least two new problems. After several months of meetings, all we had
was many pages filled with requirements that the architecture should meet,
but no approach to satisfy even a major subset of the requirements. As time
went on, the project seemed to be increasingly hopeless. But our perseverance
paid off. In Summer of 2010 the basic ideas of beaconing and the creation of
end-to-end paths through path-segment combination emerged. Although we
would have been happy with any approach that satisfied half of the requirements,
our basic approach appeared to meet most of our requirements. Delighted with
our discovery, we accelerated the pace of the project. We were encouraged
by the fact that our architecture could elegantly address every issue we came
up with. We called it the Secure Communication Infrastructure for a Future
Internet (SCI-FI).

In Fall 2010, Dave Andersen and Geoff Hasker joined the project and we
started writing a paper. Many people took issue with the designation SCI-FI,
so we went with Geoff Hasker’s suggestion of SCION — despite its rather
presumptuous meaning of “heir to the throne” — as an acronym for scalability,
control, and isolation on next-generation networks. Our paper quickly took
shape, and was accepted for publication at the IEEE Symposium on Security and
Privacy in 2011. Oddly, the paper was placed in the “Secure Information Flow
and Information Policies” session, which usually hosts papers of a different
type. Unfazed, Xin Zhang gave a strong presentation and the work was well
received.

Buoyed by the early promise of the project, we continued working on SCION
and convinced the eXpressive Internet Architecture (XIA) team at CMU that

XV
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SCION was a worthwhile choice for host-to-host communication. So initially,
SCION developed in the context of XIA, which helped support the early re-
search.

The project developed along two major axes: research and implementa-
tion. The early research results leveraged SCION for DDoS defense [114]
and anonymous communication [113]. To achieve source authentication and
path validation, we designed OPT [132], and performed a formal verification
of the protocol [263]. With the goal of producing a stronger public-key in-
frastructure (PKI) for SCION, the Accountable Key Infrastructure (AKI) was
developed [133].

The initial implementation effort started with the help of several student
projects. However, much of the progress was made when Soo-Bum Lee joined
the project and completed a first SCION prototype in 2011, which we continu-
ously improved throughout 2012.

In view of the opportunities offered by ETH Zurich, we built up a new re-
search group around the SCION project in Switzerland. Pawel Szalachowski, a
promising postdoctoral researcher from Poland, joined the group in March 2013
and became the core designer and developer of SCION. Under his guidance,
the SCION prototype and testbed went through several generations of software
and matured into the system that we currently deploy. Much progress was made
when Stephen Shirley joined the group, as he improved numerous aspects of
the system including design and implementation. Jason Lee deserves credit for
his work on the multipath socket and the high-speed router (the latter project
was in collaboration with Takayuki Sasaki who was visiting from NEC). More
recently, Tobias Klausmann and Ercan Ucan joined the developer team, greatly
improving SCION’s infrastructure and deployment. All the hard work has
paid off: in Summer 2016 we started a deployment of SCION routers in the
production networks of Swisscom and SWITCH, two large ISPs in Switzerland,
with several of their customers now engaging in test deployments.

On the research side, many newcomers joined the team at ETH, assisted by
the postdoctoral researchers David Barrera, Raphael Reischuk, and Pawel Sza-
lachowski. With SCION as the core focus of the research group, much progress
was accomplished in many directions, such as PKIs [23,52,168, 169, 233-235],
DDoS defense [22, 143], anonymous communication and privacy [49,51, 153,
156], efficient forwarding [154], fault localization [21], energy analysis [50],
high-speed duplicate detection [155], as well as public-policy and legal as-
pects [26, 194]. Besides the research contributions, Raphael Reischuk suc-
cessfully contributed to outreach and promotion by designing the SCION logo
and creating the SCION website, initiating a newsletter, and giving outreach
presentations to help attract early adopters. Many PhD students contributed
to SCION — for instance Sam Hitz has made several major contributions by
suggesting Python as a base language (to speed up implementation and increase
code clarity); implementing major parts of the (early) SCION core code, and
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designing and implementing the secure link revocation mechanism. Also many
researchers contributed to the project, for instance Virgil Gligor, Yih-Chun Hu,
and members of the XIA project team, who were involved in several research
projects and contributed much feedback and many insights to the project.

Over the past eight years, numerous people helped on the project through
research discussions, feedback on publications, setup and operation of SCION
infrastructure, research projects, and more. We estimate that around 80 people
have so far played a significant role in the project (about 30 people from our
group, about 30 bachelor or master students have completed a semester project
or thesis, and about 20 external collaborators and industry visitors who worked
closely with us). We are very grateful for everyone’s help, without which the
project would not have reached its current status. When adding up the amount
of time researchers and engineers worked on the SCION architecture, we arrive
at approximately 75 person-years of endeavor that has been spent by the end of
2016. Consequently, much thought and deliberation have gone into the design
decisions presented in this book.

When we started the project in 2009, it was mostly security researchers who
agreed on the importance of re-designing the Internet from a security perspec-
tive [27]. However, many events that have occurred since have brought Internet
security to the forefront of awareness: several cases of Internet censorship, the
Snowden revelations, NSA backdoors (e.g., in Juniper routers, standardized
cryptographic algorithms), Internet kill switches, IANA’s stewardship transition
to a multi-stakeholder governance, increasingly large DDoS attacks, attacked
certification authorities, the emergence of quantum computers, etc. Today, In-
ternet security and privacy is a common topic of conversation. In the IETF, the
main body for standardizing Internet protocols, awareness of security concerns
has greatly increased — with an IETF draft stating that pervasive monitoring
by governments constitutes an attack [85]. These events have given impetus to
the SCION project, as it matured during this period and provides solutions to
the exact problems that have moved into public awareness. Consequently, the
SCION architecture goals appear aligned with the public interests and we do
not seem to be swimming against the mainstream goals.

Bob Kahn mentioned that simplicity and elegance were the main reasons
why TCP/IP has lasted as long as it has. When a system is simple and elegant, it
is easy to understand, implement, and maintain. Thus, simplicity and elegance
are important goals in SCION, besides availability, security, scalability, and
efficiency. In the entire architecture, we attempt to minimize complexity to
achieve the desired properties, leveraging well-understood technologies. Unless
they were in line with the approach we deemed best, we avoided the urge to use
“trendy” technologies of the day, such as blockchain or doubly homomorphic
encryption. We hope that the readers will also appreciate the results of our
endeavors to produce a clean-slate re-design of a highly available point-to-point
communicationsarchitecturegandsthatsthey will join us on our journey towards a
secure Internet.
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How to Read This Book

This book describes the essential components of the SCION future Internet
architecture prototype (V1.0) including functional specifications of the SCION
network elements (e.g., servers, routers, gateways), communication protocols
among these elements, data structures, and configuration files. In particular, the
book focuses on the specification of a working prototype and additional features
that are not described in academic papers. We highlight contributions that we
believe are particularly important and interesting with a diamond symbol.

The aim of this book is to provide an easy-to-follow introduction to SCION.
To help the reader, it contains a glossary (Page 417) defining important terms
and supplying background information. We indicate terms with a glossary entry
as follows:

glossary term*
A gray bar in the margin indicates the presence of an example:
This is an example.

We also provide an index (Page 423), a list of abbreviations (Page 421), and
answers to frequently asked questions (Page 409). A comprehensive example
of SCION’s operations is on Page 223 and illustrates the end-to-end communi-
cation between two hosts, including name resolution, path resolution, packet
origination, and packet forwarding. The example provides references to detailed
explanations of the underlying concepts and techniques, and thus serves as a
good starting point for the more technically adept readers.

The book also aims to provide a comprehensive description of the main
design features for achieving a secure Internet architecture. While many of
the detailed design aspects are described in research papers, we have added
relevant details where necessary to understand the important concepts. We have
structured the book in such a way that the technical details gradually increase
as it proceeds: starting with an overview and moving along to the format of
configuration files at the end.

Additional SCION resources (research papers, talks, presentations, source
code, and links to contributing efforts) are available on our web page:

https://www.scion-architecture.net

We also encourage interested readers to sign up to the SCION mailing list
(through the above website). Furthermore, a discussion board for the SCION
community takes questions and offers support regarding the development and
deployment.of SCION. As we encounter errors in the book, we will document
them in an errata list on our web page.
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1 Introduction

DAVID BARRERA, LAURENT CHUAT, ADRIAN PERRIG,
RAPHAEL M. REISCHUK, PAWEL SZALACHOWSKI

The Internet has been successful beyond even the most optimistic expectations.
It permeates and intertwines with almost all aspects of our modern society and
economy. The success of the Internet has created a dependency on communica-
tion as many of the processes underpinning the foundations of modern society
would grind to a halt should communication become unavailable. However,
much to our dismay, the current state of safety and availability of the Internet is
far from commensurate with its importance.

Although we cannot conclusively determine what the impact of a 1-minute,
1-hour, 1-day, or 1-week outage of Internet connectivity on our society would be,
anecdotal evidence indicates that even short outages have a profound negative
impact on governmental, economic, and societal operations. To make matters
worse, the Internet has not primarily been designed for high availability in the
face of malicious actions by adversaries. Recent patches to improve Internet
security and availability have been constrained by the design of the current
Internet architecture. A new Internet architecture should offer availability and
security by design, provide incentives for deployment, and consider economic,
political, and legal issues at the design stage.

In this book, we describe SCION, an inter-domain network architecture
designed to address these issues by providing a fundamental building block:
highly available point-to-point communication. We present SCION’s goals,
design, limitations, specifications, extensions, and the results of several years
of research conducted since the initial publication [266]. But we start, as a
motivation for our work, by reflecting on the current state of the Internet.

1.1 Today’s Internet

Witnessing the fast advancement of Internet-based services, applications, and
technologies, it might seem that the Internet is evolving at a rapid pace. In
reality though, only parts of the protocol stack have changed significantly since
the Internet’s inception. The application and physical layers have adapted to

© Springer International Publishing AG 2017 3
A. Perrig et al., SCION: A Secure Internet Architecture, Information
Security and Cryptography, https://doi.org/10.1007/978-3-319-67080-5_1
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new needs and trends, but the core protocols have remained mostly the same
for decades. This situation has been referred to as the “Internet Hourglass”,
meaning that a handful of protocols form a thin — and seemingly irreplaceable
— waist in the protocol stack, while both ends of the stack continue to increase
in diversity. In this section, we start by discussing the two core technologies of
the current Internet: the Internet Protocol (IP) [201] and the Border Gateway
Protocol (BGP) [209].

Nobody could have predicted how impressively these protocols would stand
the test of time, as they remained relatively static over the past 25 years. How-
ever, as the Internet continued to expand and needed to accommodate new
uses, numerous issues of the architecture came to light. Since a comprehensive
treatment of the Internet’s problems would require an entire book, in this section
we only present an overview of the salient issues that demonstrate the need for
a new architecture.

1.1.1 The Internet Protocol (IP)

IP is one of the fundamental protocols of the Internet, as it enables the forward-
ing of packets between end hosts. Its first major version (IPv4) was specified in
1981 and extended by IPv6 in 1998 [64] (as of April 2017, IPv6 is estimated to
be used by around 15% of hosts [102]). IP routes packets between a source and
a destination along a single path that is opaque from the end host’s perspective.
To forward packets, end hosts (as well as routers) do not need a complete
path, but only a table to determine the next hop solely based on the destination
address. Neither senders nor receivers can influence the path that their packets
take. This approach is simple, but it also comes with many drawbacks:

¢ Lack of separation between routing and forwarding: IP packet for-
warding depends on forwarding tables in routers, which change dynami-
cally over time. Hence, a working path can suddenly change in direction
or even break after an update to forwarding tables.

¢ Lack of transparency and control: Being able to select and verify
the path that packets take is desirable in many situations. End hosts
might want to avoid packets being routed through adversarial or untrusted
networks, or they might want to choose the most suitable path with regard
to a specific metric (e.g., latency or bandwidth). Unfortunately, IP does
not offer such an option. Although loose and strict source routing exist,
these extensions are not commonly supported in today’s networks. It is
also not possible to simultaneously use multiple distinct paths towards
the same destination — even though multipath communication can offer
numerous beneficial properties; as we will demonstrate throughout the
book.

o _Stateful routers: IP routers maintain forwarding tables to determine the
next hop of a received packet. This basic requirement has undesirable
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consequences. Performing a route table lookup for every packet is a time-
consuming operation. Therefore, high-performance networking equip-
ment typically relies on ternary content-addressable memory (TCAM)
hardware, which is expensive and energy-intensive. Moreover, the con-
stantly growing size of forwarding tables poses a problem for routers, as
the storage capacity of TCAM hardware is limited. Routers that keep
state for network information can also suffer from denial-of-service (DoS)
attacks that rely on the exhaustion of the router’s state [219].

1.1.2 The Border Gateway Protocol (BGP)

BGP is the routing protocol that provides connectivity between independently
operated networks or autonomous systems (ASes)* such as Internet service
providers (ISPs).! Each AS advertises its reachability information as a list of
IP prefixes* through a BGP update message. Such BGP updates accumulate
the sequence of ASes through which they have passed, and they contain a list
of attributes characterizing the advertised routes. There are two main types of
business relationships between ASes: a customer-provider relationship (one
AS pays another to forward traffic), and a peering relationship (two ASes agree
that directly connecting to each other without payment is mutually beneficial).
BGP lets ISPs perform traffic engineering and select routes based on policies
that reflect these business relationships through an intricate decision process
that is used to select the best route to a destination [45]. Unfortunately, BGP
comes with a number of shortcomings:

¢ QOutages: Since the control plane* and the data plane* are not clearly
separated in today’s Internet, forwarding may suddenly stop during route
changes. By attacking routing, an adversary can thus prevent forwarding
from functioning correctly. Furthermore, when BGP update messages
are sent, the network may require up to tens of minutes to converge to a
stable state [145], which can lead to outages. Studies have shown that
a sudden degradation in user-perceived quality of VoIP calls is highly
correlated with BGP updates [144].

* Lack of fault isolation: BGP is a globally distributed protocol, running
amongst all BGP speakers in the entire Internet. BGP update messages
are thus disseminated globally. Due to the lack of any routing hierarchy
or isolation between different areas, a single faulty BGP speaker can
affect routing in the entire world, as occurred in the AS 7007 incident,
which disrupted global connectivity due to a single faulty router [176].

e Lack of scalability: The amount of work required to be performed
by BGP is proportional to the number of destinations. Moreover, path
changes are disseminated profusely and sometimes throughout the entire
Internet. This reduces scalability and prevents BGPsec (a proposal for a

IThe definition of words marked with a star can be found in the glossary starting on Page 417.
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secured version of BGP) from frequently disseminating freshly signed
routing updates.

* Single path: At the end of the BGP decision process used to determine
how to reach a given destination, a single path is selected. Although
some multipath protocols allow simultaneous use of multiple network
interfaces, BGP does not provide path control to end hosts and does not
allow use of multiple AS-level paths.

1.1.3 Lack of Authentication and Trust

Authentication is another important feature that the original Internet protocols
lacked. The necessity of authenticating digital data is becoming increasingly
prevalent, as adversaries exploit the absence of authentication to inject malicious
information to attack the network.

Infrastructures to provide authentication have been added in an ad hoc man-
ner: RPKI provides the roots of trust for the authentication of BGPsec messages;
TLS allows browsers to authenticate web servers; and DNSSEC provides au-
thentication for DNS. Nevertheless, the current situation is still unsatisfactory in
many regards. For example, all these protocols are sensitive to the compromise
of a single entity. BGPsec and DNSSEC both rely on a single or very small
number of roots of trust, while TLS is based on an oligopolistic trust model in
which any one of hundreds of authorities can issue a certificate for any domain
name. The Internet Control Message Protocol (ICMP) does not even have an au-
thenticated counterpart, thus allowing the injection of fake ICMP packets. The
Internet also lacks a general infrastructure to enable two end hosts to establish
a shared secret key for end-to-end encrypted and authenticated communica-
tion; the simplest mechanism today is to rely on trust-on-first-use (TOFU)
approaches [250], which opportunistically send the public key unprotected to
the other communicating party.

1.1.4 Attacks

In this section, we present a series of attacks against which the current Internet
architecture offers little to no protection.

Prefix Hijacking

Due to a lack of fault isolation in BGP, numerous Internet outages are caused by
a malicious or erroneous announcement of IP address space, a problem called
prefix hijacking. Perhaps the most famous case of prefix hijacking happened in
February 2008 when Pakistan’s internal censorship attempt resulted in a global
outage of YouTube that took close to two hours to resolve [211]. This was not
the first nor the last such event.
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A related attack is prefix redirection, where an adversary wants to eavesdrop
on traffic towards a destination and hijacks its prefix to receive its packets, but
also engineers BGP updates such that the packets finally do reach the intended
destination. Renesys (now Dyn) documented such cases of prefix redirection,
where the adversary managed to re-direct traffic to take a detour across another
continent [63].

This problem is exacerbated by the fact that defining BGP routing policies is
often a complicated, manual, and thus error-prone process. It can occur that a
backup path is rejected by a routing policy, hence limiting possible recovery
paths.

Spoofing and DDoS Attacks

ICMP can be employed to send error or diagnostic messages (used by tools such
as ping or traceroute). Because ICMP packets are not authenticated, the source
address can easily be spoofed, which can lead to distributed denial-of-service
(DDoS) attacks [142], or be used to disconnect two BGP routers from each
other [99]. Since regular IP packets are not authenticated either, they suffer
from the same problem, i.e., the source IP address can be spoofed.

Distributed denial-of-service (DDoS) attacks have been widely used to pre-
vent access to servers or network resources. For example, a large-scale attack
against Estonia made much of the country’s critical infrastructure inaccessible
during one week in April 2007 [109], and recently a very large attack with an
unprecedented amount of attack traffic — exceeding 1 Tbps — on Dyn’s DNS
infrastructure rendered numerous web sites unavailable [137,198].

Forged TLS Certificates

Compromised trust roots have been used to create rogue TLS certificates [166,
167]. In a famous case, the government of Iran used forged certificates for
Google and Yahoo services to perform man-in-the-middle attacks on its citizens;
Iran is suspected to have mounted the attack on the DigiNotar certification
authority (CA)*, which signed these certificates [90,228]. CAs hold significant
power in the TLS public-key infrastructure, as any trusted CA can produce a
valid certificate for any domain name. However, browser and OS vendors hold
even more power, as they control which CAs are trusted by default.

1.1.5 Transition to a New Architecture

Changing network protocols as fundamental as IP and BGP is not an easy
task. But in the long run, as for any technology, evolution is inevitable. It
is clear, however, that the current architecture cannot be replaced overnight.
Consequently, we need to propose a set of models and tools to achieve a
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progressive transition towards the desired properties. By redesigning the entire
architecture from a clean-slate perspective, we follow a holistic approach and
aim at fixing a broad range of problems, exploiting the benefit of hindsight and
leveraging the inventions made over the past decades.

1.2 Goals of a Secure Internet Architecture

In this section, we present high-level goals that an inter-domain point-to-point
communication architecture should accomplish; we illustrate why these goals
are important and how they can be achieved. We also briefly discuss non-goals,
i.e., specific properties that we intentionally exclude from the design of our
secure Internet architecture.

1.2.1 Availability in the Presence of Adversaries

Our overarching goal is the design of a point-to-point communication infrastruc-
ture that remains highly available even in the presence of distributed adversaries:
as long as an attacker-free path between endpoints exists, that path should be
discovered and used with guaranteed bandwidth between these endpoints.

Availability in the presence of adversaries is an exceedingly challenging
property to achieve. An on-path adversary may drop, delay, or alter packets that
it should forward, or inject additional packets into the network. The architecture
hence needs to provide mechanisms to circumvent such malicious elements.
An off-path adversary could launch hijack attacks to attract traffic to flow
through network elements under its control, and then perform on-path attacks.
Such traffic attraction can take various forms; for instance, an adversary could
announce a desirable path to a destination by using forged paths or attractive
network metrics. Conversely, an adversary could render paths not traversing its
network less desirable (e.g., by inducing congestion). An adversary controlling
a large botnet could also perform distributed denial-of-service (DDoS) attacks,
congesting selected network links. Finally, an adversary could interfere with
the discovery of legitimate paths (e.g., by flooding the control plane with bogus
paths).

1.2.2 Transparency and Control

We aim to provide greater transparency and control for the forwarding paths of
network packets, and the trust roots used for authentication.
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Transparency and Control over Forwarding Paths

When the network offers path transparency, endpoints know (and can verify) the
forwarding path taken by network packets. Applications that transmit sensitive
data can benefit from this property, as it can be ensured that packets traverse
certain Internet service providers (ISPs) and avoid others.

Taking transparency of network paths as a first property, we aim to addi-
tionally achieve path control, a stronger property that enables ASes to control
the incoming path segments™ through which they are reachable. Given path
segments, senders can then create end-to-end paths. This seemingly benign
requirement has several repercussions — beneficial but also fragile if imple-
mented incorrectly. The beneficial aspects of path control for senders and
receivers include the following:

¢ Separation of control plane and data plane: To enable path control,
the control plane (which determines networking paths) needs to be sepa-
rated from the data plane (which forwards packets according to the deter-
mined paths). The separation ensures that forwarding cannot retroactively
be influenced by control-plane operations, e.g., routing changes. The
separation contributes to enhanced availability.

¢ Enabling of multipath communication: Path control lets any sender
select multiple paths to carry packets towards the destination. Multipath
communication is a powerful mechanism to enhance availability [8].

* Defending against network attacks: If the packet’s path is carried in its
header (which is one way to achieve path control), then the destination can
reverse the path to return its response to the sender, mitigating reflection
attacks. Path control also enables circumvention of malicious network
entities or congested network areas, providing a powerful mechanism
against DoS and DDoS attacks.

The fragile aspects that need to be handled with care are the following:

* Respecting ISPs’ forwarding policies: If senders have complete path
control, they may violate ISPs’ forwarding policies. We thus need to
ensure that ISPs offer a set of policy-compliant paths which senders can
choose from.

* Preventing malicious path creation: A malicious sender could exploit
path control for attacks, for example by forming malicious forwarding
paths such as loops that consume increased network resources.

* Scalability of path control: Source routing does not scale to inter-
domain networks, as a source would need to know the network topology
to determine paths. To make path control scale, we ensure that sources
select amongst a relatively small set of paths. We thus rely on source-
selected paths and packet-carried forwarding state instead of full-fledged
source routing.
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* Permitting traffic engineering: Fine-grained path control would inhibit
ISPs from operating and performing traffic engineering. We thus seek to
provide end-host path control at the granularity of autonomous systems
on the level of ingress/egress interfaces, allowing ISPs to fully control
internal paths. ISPs can further perform traffic engineering based on
per-path bandwidth allocations, which can be encoded in the forwarding
information.

Transparency and Control over Trust Roots

Roots of trust are used for the verification of entities in today’s Internet; for
example, verification of a web server’s public key in a TLS certificate, or
verification of a Domain Name System (DNS) response in DNSSEC [13].
Transparency of trust roots provides the property that an end host or user can
know the complete set of trust roots that it needs to rely upon for the validation
of a certificate. Such enumeration of trust roots is complicated today because
of intermediate certification authority (CA) certificates that are not explicitly
listed but implicitly trusted, e.g., in the TLS public-key infrastructure (PKI).
In fact, independent studies have counted over 300 roots of trust in the TLS
PKI [1, 78], but because of the lack of transparency there may be additional
ones these studies have missed. Providing control over trust roots enables trust
agility [165], allowing users to select or exclude the roots of trust they want to
rely upon.

1.2.3 Efficiency, Scalability, and Extensibility

Aside from the lack of availability and transparency, today’s Internet also suffers
from a number of stability deficiencies. For instance, the Border Gateway Pro-
tocol (BGP) encounters stability issues in cases of network fluctuations, where
routing protocol convergence can require minutes [216]. A 2006 earthquake in
Taiwan that severed several undersea communication cables caused Internet out-
ages throughout Asia for several days [25]. Moreover, forwarding tables have
reached the limits of their scalability due to IP prefix de-aggregation (i.e., an-
nouncement of more specific prefixes) and multihoming™ [117]. Unfortunately,
extending the memory size of routing tables is challenging as the underlying
ternary content-addressable memory (TCAM)* hardware is expensive and
power-hungry, consuming on the order of a third of the total power consumption
of a router. Extending the routing-table memory would thus drastically increase
the cost and power consumption of routers.

Security and high availability come at a cost, usually resulting in lower effi-
ciency and potentially diminished scalability. High performance and scalability,
however, are required for viability in the current economic environment. We
thereforeexplicitly'seekhighrefficienicyras a goal, so that packet forwarding is at
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least as efficient (in terms of latency and throughput) as current IP forwarding,
in the common cases. Moreover, we seek improved scalability compared to the
current Internet, in particular with respect to BGP and the size of routing tables.

An approach to achieving efficiency and scalability is to avoid storing for-
warding state on routers wherever possible. We thus aim to encode state into
packet headers and to protect that state cryptographically, enabling simpler
router architectures compared to today’s IP routers. We observe that modern
block ciphers such as AES can be computed faster than performing memory
lookups. For example, on current PC platforms, computing AES requires on the
order of 50 cycles while fetching a byte from main memory requires around 200
cycles [4]. Moreover, a modern block cipher can be implemented in hardware
with a few tens of thousands of gates, which is sufficiently small to replicate
it profusely, which in turn enables high parallelism — the high complexity of
a high-speed memory system prevents such replication at the same scale. Be-
sides higher efficiency, avoiding state on routers also prevents state-exhaustion
attacks [219] and state inconsistencies across routers.

Our goal of efficiency and scalability is in line with the design rationale of
end hosts assisting with network-layer functionality such as path selection. A
selected path is communicated to the network by packet-carried forwarding
information, which in turn removes the need for inter-domain routing tables
at border routers. Consequently, end-host path selection results in a simpler
forwarding plane and thus more efficient routers. Furthermore, end-host path se-
lection is in line with the end-to-end principle, which states that a network func-
tionality should be implemented by the entity that has the required information,
and is thus in the best position to correctly implement the functionality [217].
Since the end host has the most information about its internal state, functions
such as bit-error recovery, duplicate suppression, or delivery acknowledgments
are most efficiently handled by the end host itself. Similarly, the end host has
the knowledge of preferred or undesirable network paths and thus should be
involved in path selection.

To future-proof SCION, we design the core architecture and codebase to
be extensible, such that additional functionality can be easily built and de-
ployed. SCION clients and routers should (without overhead or expensive
protocol negotiations) discover the minimum common feature set supported by
all intermediate nodes.

1.2.4 Support for Global but Heterogeneous Trust

Given the diverse nature of constituents in today’s Internet with diverse legal
jurisdictions and interests, an important challenge is how to scale the authenti-
cation of entities (e.g., autonomous systems for routing, name servers for DNS,
or domains for TLS) to a global environment.
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The trust roots of currently prevalent PKI models (monopoly and oligopoly)
do not scale to a global environment because mutually distrusting entities cannot
agree on a single trust root (monopoly model), and because the security of a
plethora of trust roots is only as strong as its weakest link (oligopoly model).

We thus seek an architecture that supports a global environment with hetero-
geneous trust.

1.2.5 Deployability

Incentives for deployment are important to overcome the resistance to upgrading
today’s Internet. A multitude of features is necessary to offer the initial impulse:
high availability even under control-plane and data-plane attacks (e.g., built-in
DDoS defenses), path transparency and control, trust-root transparency and
control, high efficiency, robustness to configuration errors, fast recovery from
failures, high forwarding efficiency, multipath forwarding, and so on.

If early adopters cannot obtain sufficient benefits from migrating to a new
network architecture, even initial deployment is unlikely to be successful. So
ideally, already the first deploying ISP should gain a competitive advantage
through the ability to sell a service that is desirable even for the initial customers.

Migration to the new architecture should require minimal added complexity
to the existing infrastructure. Deployment should be possible by re-utilizing the
internal infrastructure of an ISP, and only require installation or upgrade of a
few border routers. Moreover, configuration of the new architecture should be
similar to that of the existing architecture, such as in the configuration of BGP
policies, minimizing the amount of additional personnel training.

Economic and business incentives are also of critical importance. ISPs should
be able to define new business models and sell new services. Users should
derive a business advantage from the new architecture, for example by obtaining
properties similar to a leased line at a smaller cost. Migration cost should be
minimal, requiring only the deployment of low-cost routers. Finally, a new
architecture should not disrupt current Internet business models, but maintain
the current Internet topology and business relationships (e.g., support peering).

1.2.6 Non-goals

We deliberately exclude certain properties and goals that could be added as
additional functionality later on. For example, we do not consider multicast or
efficient content dissemination as part of the basic communication infrastructure,
as we recognize the significant complexity these features would add. Also,
these features can be effectively added through an overlay leveraging a next-
generation Internet architecture’s basic communication infrastructure [86].

Weradditionallysconsidersseveralyother problems to be out of scope for a
network architecture. A major category of current security problems is soft-
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ware vulnerabilities. While software vulnerabilities of end hosts are clearly out
of scope, software vulnerabilities of network components can affect network
operation. It is thus important to address these network vulnerabilities through
a robust network architecture that can restrain malicious components. Mali-
cious Internet content (e.g., spam or phishing emails, malicious web pages) is
preferably addressed by a layer above the communication infrastructure. The
architecture, however, should offer mechanisms that assist in defending against
these threats.

1.3 Future Internet Architectures

Several efforts at redesigning the Internet have been made over the past two
decades to satisfy the new requirements of emerging Internet-based applica-
tions. Such requirements include naming, routing, mobility, network efficiency,
availability, manageability, and evolvability of the Internet. We discuss several
projects in this space based on a loosely temporal order clustered by topics.

The idea of partitioning the network into smaller parts has previously been
considered for making network routing more scalable, for instance in hierarchi-
cal routing [127, 134], the Landmark hierarchy [242], hierarchies of nodes in
Nimrod [47,223], regions in NewArch [57], clusters of computers in FARA [56],
isolated regions with independent routing protocols in HLP [232], realms and
trust boundaries in the Postmodern Internet Architecture (POMO) [34,46], and
regions in NIRA [259].

The NewArch project [57] describes comprehensive requirements for a new
Internet, such as separation of identity from location, late binding using asso-
ciation, identity authenticity, and evolvability. However, it mostly emphasizes
a new direction for end-point entities while the packet delivery in the current
IP network is left intact. NewArch uses the New Internet Routing Architec-
ture (NIRA) [259] for inter-domain routing, which aims to introduce competi-
tion among ISPs in the core by providing route control to the end users, who
can choose domain-level paths.

Information-centric networking (ICN) or content-centric networking (CCN)
architectures optimize content access through in-network content caches. Since
content access across a user population frequently exhibits strong temporal and
spatial locality, in-network content caches can serve the same requests made
by nearby users. For instance, the Named Data Networking (NDN) [123, 184]
architecture decouples location from identity and uses identity for locating
the corresponding content. NDN relies on in-network caching of data and
is useful for accessing popular static content. The CCNx project proposes
a related implementation of content-centric networking, developing detailed
specifications and prototype systems [192]. The Publish-Subscribe Internet
RoutingsParadigmy(PSIRP)ssupportsiinformation-centric networking based on a
publish-subscribe pattern [237]. It proposes an elegant approach to reduce the
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state on routers by having packets carry Bloom filters to encode the next hops of
a multicast packet [125]. These architectures, however, have a high overhead for
point-to-point communication, for ephemeral content (e.g., voice or video calls),
or for per-user customized content. Our energy analysis presented in Chapter 14
suggests that content-centric approaches have higher energy utilization than
fetching content directly from the origin server, due to the increased power
consumption of routers with this architecture.

MobilityFirst [208] is an architecture with the main goal of providing con-
nectivity to billions of mobile devices. At its core is the Auspice system, which
provides a highly efficient global name resolution service that can quickly map
billions of identities to their locations [220]. NEBULA [9] addresses secu-
rity problems in the current Internet. NEBULA takes a so-called default-off
approach to reach a specific service, where a sender can send packets only if
an approved path to a service is available. The network architecture helps the
service to verify whether the packet followed the approved path (i.e., supporting
path verification). However, NEBULA achieves this property at a high cost. All
routers on the path need to perform computationally expensive path verifica-
tion for each packet and need to keep per-flow state. Serval [186] provides a
service abstraction layer for service-ID-based resolution in NEBULA. Serval
introduces a service-access layer that enables late binding of a service to its
location, which provides flexibility in migrating and distributing services.

XIA [106] proposes an evolvable network architecture that can easily adapt
to the evolution of networks by supporting various principal types (where the
principal includes but is not limited to service, content, host, domain, and path).
Thanks to its flexibility, XIA can use SCION for secure and highly available
data forwarding.

The Framework for Internet Innovation (FII) [135] also proposes a new
architecture to enable evolution, diversity, and continuous innovation, such that
the Internet can be composed of a heterogeneous conglomerate of architectures.
The ChoiceNet [253] architecture proposes an “economy plane” to enable
network providers to offer new network-based services to customers, providing
a network environment for improving innovation and competition.

Several architecture proposals suggest the approach of better path control for
senders and receivers, for example i3 [229], Platypus [204,205], NIRA [259],
SNAPP [195], Pathlets [98], and Segment Routing [88]. These proposals enable
the source to embed a forwarding path into the packet header, a concept that
we refer to as packet-carried forwarding state (PCES). PCFS provides many
beneficial properties, such as enabling multipath communication and protecting
packets from unanticipated re-routing.

Forward [81] and SysSec [82] are proposing to build secure and trusted Infor-
mation and Communication Technology (ICT) systems by engaging academia
and industry. Forward is an initiative by the European Commission to promote
the collaboration and partnership between industry and academia in their com-
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mon goal of protecting ICT infrastructures. The Forward project categorizes
security threats to various ICT systems including individual devices, social
networks, critical infrastructures (such as smart electric grids), and the Internet
infrastructure, and it aims at coordinating multiple research efforts to build se-
cure and trusted ICT systems and infrastructures. SysSec aims to bring together
the systems security research community in Europe, promoting cybersecurity
education, engaging a think tank in discovering the threats and vulnerabilities of
the current and future Internet, creating an active research road map in the area,
and developing a joint working plan to conduct state-of-the-art collaborative
research. Since Forward and SysSec currently focus on identifying and handling
threats, we believe our proposed tasks to be a good addition to the projects
in that they provide an architecture that would significantly reduce the attack
surface. RINA [249] is a recursive inter-network architecture that provides
unified APIs across all protocol layers. In RINA, all layers have the same func-
tions with different scope and range, where a layer is a distributed application
that performs and manages inter-process communication. We endeavored to
design our prototype to fit into this paradigm so that our architecture can support
seamless integration with other higher-layer security protocols/mechanisms.

Many researchers are currently studying software-defined networking (SDN),
for example in the OpenFlow [171, 189] project. These efforts mainly consider
intra-domain communication, which SCION can leverage to communicate
within a domain.

Several future Internet efforts provide testbeds for running and testing a new
architecture, such as GENI [28], FIWARE [80], and FIRE [79].

We have developed SCION with a focus on security and high availability for
point-to-point communication, which is a unique perspective and can contribute
to other future Internet efforts. For instance, content-centric networking also
needs a routing mechanism to reach the data source. SCION can offer the
routing protocol to support that functionality. Once a server is found in a
service-based infrastructure or a nearby content cache is found in a content-
centric architecture, point-to-point communication between the end host and the
server will offer high communication efficiency, as pure forwarding is faster than
server-based or content-based lookups. Similarly, SCION can provide the point-
to-point communication fabric in a mobility-centric architecture. Consequently,
SCION offers mechanisms that complement many previously proposed future
Internet architectures.
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This chapter provides an overview of SCION. The goals to be met by a secure
Internet architecture were described in the previous chapter, but to recapitulate
briefly, our main aim is to design a network architecture that offers highly avail-
able and efficient point-to-point packet delivery, even if some of the network
operators and devices are actively malicious. The following chapters describe
the SCION architecture in increasing detail.

SCION introduces the concept of an isolation domain (ISD)*, which is a
fundamental building block for achieving the properties of high availability,
transparency, scalability, and support for heterogeneous trust. An ISD consti-
tutes a logical grouping of autonomous systems (ASes), as depicted in Figure 2.1.
An ISD is administered by multiple ASes, which form the ISD core*. We refer
to these as core ASes*. An ISD usually also contains multiple regular ASes.
The ISD is governed by a policy, called the trust root configuration (TRC)*,
which is negotiated by the ISD core. The TRC defines the roots of trust that are
used to validate bindings between names and public keys or addresses.

An AS joins an ISD by purchasing connectivity from another AS in the ISD.
Joining an ISD indicates an acceptance of the ISD’s TRC. Typically, 3—10 ISPs
constitute an ISD core, and their associated customers participate in the ISD. We
envision that ISDs will span areas with uniform legal environments that provide
enforceable contracts. If two ISPs have a contract dispute they cannot resolve
by themselves, such a legal environment can provide an external authority to
resolve the dispute. All ASes within an ISD also agree on the TRC, i.e., the
entities that operate the trust roots and set the ISD policies. One possible model
is thus for ISDs to be formed along national boundaries or federations of nations,
as entities within a legal jurisdiction can enforce contracts and agree on a TRC.
ISDs can also overlap, so an AS may be part of several ISDs. Although an
ISD ensures isolation from other networks, the central purpose of an ISD is to
provide transparency and to support heterogeneous trust environments. While
ISDs may seem to lead to “Balkanization” and prevent an open Internet, they
counter-intuitively provide openness and transparency, as we hope to elucidate
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Figure 2.1: Autonomous systems (ASes) grouped into four ISDs. The core
ASes are connected via core links. Non-core ASes are connected
via customer-to-provider or peering links. AS H participates in two
ISDs.

in this book (for more information on this point, please refer to the FAQ on
Page 409).

SCION uses two levels of routing, intra-ISD and inter-ISD. Both levels
utilize path-segment construction beacons (PCBs)* to explore routing paths
(see Figure 2.2a). An ISD core AS announces a PCB and disseminates it as a
policy-constrained multipath flood either within an ISD (to explore intra-ISD
paths) or amongst core ASes (to explore inter-ISD paths). We refer to this
process as beaconing. PCBs accumulate cryptographically protected AS-level
path information as they traverse the network. This information (which we
call hop fields (HF)) within received PCBs is chained together by sources
to create a data transmission path segment that traverses a sequence of ASes.
Packets thus contain AS-level path information, which avoid the need for border
routers to maintain inter-domain forwarding tables. We refer to this concept as
packet-carried forwarding state (PCFS)*.

Figure 2.3 illustrates the chronological sequence of operations required to
obtain a forwarding (i.e., end-to-end) path. During the path exploration or
beaconing phase, ASes discover paths to core ASes. Path registration allows
ASes to transform a few selected PCBs into path segments, and register these
path segments with a path infrastructure (making them available for other
ASes). The name resolution process translates a domain name into its associated
SCION addzress(es)=.. The path resolution process allows end hosts to create
an end-to-end forwarding path to a destination; it consists of (a) path lookup,
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Figure 2.2: (a) ISD with path-segment construction beacons (PCBs) that are
propagated from the ISD core to customer ASes, and path segments
for ASes A, B, C, D, and E to the ISD core. (b) Magnified view of
a SCION AS with its routers and servers. The path from AS C to
the ISD core traverses two internal routers.

where the end host obtains path segments, and (b) path combination, where
an actual forwarding path is created from the path segments. We discuss these
phases in this chapter and describe them in more detail in the sections referred
to in Figure 2.3.

Path Exploration (Beaconing) L Path Registration
§7.1 on Page 119 §7.1 on Page 119

_____________________________

Path Resolution

I
I
Name Resolution :_) Path Lookup - Path Combination
§6 on Page 101 |' ]§7.2 on Page 132 §8.2 on Page 164

Figure 2.3: Process leading to the creation of a forwarding path.

Servers and Routers

Figure 2.2b shows the main AS components in SCION: beacon servers* dis-
cover path information, path servers* disseminate path information, certificate
ormation, and name servers* provide
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name resolution from user-understandable names to SCION addresses. In ad-
dition, border routers provide the connectivity between ASes, while internal
routers forward packets inside the AS.

Beacon servers are responsible for generating, receiving, and propagating
PCBs (see Figure 2.2a) to construct path segments, a process we also refer to as
beaconing. SCION supports two types of beaconing: intra-ISD beaconing (to
construct path segments from a core AS to non-core ASes within an ISD) and
inter-ISD beaconing (to construct path segments amongst core ASes within an
ISD and across ISDs). Figure 2.4 shows how PCBs originate from a core AS
beacon server and are propagated to non-core customer ASes. Non-core AS
beacon servers receive these PCBs and re-send them to their customer ASes,
which results in AS-level path segments. At every AS, information about the
ingress and egress interfaces of the AS is added to the PCB. The ingress and
egress interfaces identify the link to a neighboring AS. Periodically, a beacon
server generates a set of PCBs, which it forwards to its customer ASes.

Inter-ISD beaconing in SCION is similar to BGP’s route-advertising process,
although in SCION the process is periodic and PCBs are flooded over policy-
compliant paths to discover multiple paths between any pair of core ASes.
SCION’s beacon servers can be configured to implement all BGP route selection
policies, as well as additional properties (e.g., control of upstream ASes) that
BGP cannot express (see Section 10.9).

Name servers in SCION perform a similar task to DNS servers in today’s
Internet: translate a human-understandable name into a SCION address. SCION
proposes the RAINS system for this purpose Chapter 6. Based on the (ISD,
AS) tuple, end-to-end paths can be looked up and constructed. The end-host
address and end-to-end path are then placed in the SCION packet header to
enable delivery to a given destination.

Path servers store mappings from AS identifiers to sets of announced path
segments, and are organized as a hierarchical caching system similar to today’s
DNS. Through beacon servers, ASes select the set of path segments through
which they want to be reached, and upload them to a path server in the ISD
core.

Certificate servers keep cached copies of TRCs retrieved from the ISD core,
keep cached copies of AS certificates, and manage keys and certificates for
securing inter-AS communication. Certificate servers are queried by beacon
servers when validating the authenticity of PCBs (i.e., when a beacon server
lacks a certificate).

Border routers connect different ASes supporting SCION. The main task
of border routers is to forward packets. In the case of a packet containing a
service address, the border router forwards it to the appropriate server, and in
the case of a data packet the border router forwards it either to a host inside
the AS or towards the next border router. Since SCION can operate using any
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communication fabric inside an AS (e.g., OSPF, SDN, MPLS), the internal
routers do not need to be changed.

2.1 Control Plane

We will now discuss the control plane components and mechanisms in more
detail. The control plane is responsible for discovering paths and making those
paths available to end hosts.

2.1.1 Path Exploration and Registration

Inter-domain beaconing enables core ASes to learn paths to other core ASes.
Through intra-domain beaconing, non-core ASes learn path segments leading to
core ASes, which enable an AS to communicate with the ISD core. Figure 2.2a
shows path segments from ASes A, B, C, and D to the core. The beaconing
process is asynchronous, i.e., the PCB generation is local, based on a per-AS
timer, and PCBs are not propagated immediately upon arrival.

Paths are represented at AS-level granularity, which by itself is insufficient
for diversity; ASes often have several connection points, and thus a disjoint path
is possible despite the AS sequence being identical. For this reason, SCION
encodes AS ingress and egress interfaces as part of the path, exposing a finer
level of path diversity. Figure 2.4 demonstrates this feature: AS F receives two
different PCBs via two different links from a core AS. Moreover, AS F uses
two different links to send two different PCBs to AS G, each containing the
respective egress interfaces. AS G extends the two PCBs and forwards both of
them over a single link to its customer.

An AS typically receives several PCBs representing several path segments to
various core ASes. Figure 2.2a shows two path segments for AS D, for example.
There are three types of path segments:

* A path segment from a non-core AS to the core is an up-segment.
* A path segment from the core to a non-core AS is a down-segment.
* A path segment between core ASes is a core-segment.

However, path segments are typically bidirectional and thus support packet
forwarding in both directions. In other words, up-segments and down-segments
are invertible: by flipping the order, an up-segment is converted to a down-
segment and vice versa. Path servers learn up-segments by extracting them
from PCBs they obtain from the local beacon servers. Path servers in core ASes
also store core-segments to reach other core ASes.

The beacon servers in an AS select the down-segments through which the
AS desires to be reached, and register these path segments at the core path
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Figure 2.4: Intra-ISD PCB propagation from the ISD core down to customer
ASes. For the sake of illustration, the interfaces of each AS are
numbered with consecutive integer values. In practice, each AS can
choose any encoding for its interfaces. In fact, only the AS itself
needs to understand its encoding.

servers. When links fail, segments expire, or better segments become available,
the beacon servers keep updating the down-segments registered for their AS.

An important requirement is that SCION also supports peering links between
ASes. Consistent with AS policies in the current Internet, PCBs typically do
not traverse peering links. However, peering links are announced along with
aregular path in a PCB. Figure 2.4 shows how AS F includes its two peering
links in the PCB. If the same peering link is announced in the path segments
by both ASes adjacent to the peering link, then the peering link can be used
to shortcut the end-to-end path (i.e., without going through the core). SCION
SD boundaries, which highlights the
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importance of SCION’s path transparency property; a source knows the exact
set of ASes and ISDs traversed during the delivery of a packet.

2.1.2 Path Lookup

To reach its ISD core, a host performs a path lookup at its local path server,
fetching up-segments. To reach a remote destination, a host first queries a
name server to obtain the ISD-AS-address triplet of the destination. The host
then queries its path server for the down-segment of the destination AS. If the
local path server has no cached entry for the down-segment, it will query the
destination AS’s core path server.

Example. Consider a source host in ISD 1 sending a path lookup request to
its local path server, which forwards the request to a core path server. If the
requested path’s destination AS is within ISD 1, the core path server responds
by immediately sending up to k down-segments to the local path server. If
the requested path’s destination AS is in ISD 2, then the core path server
first requests the corresponding down-segments from the core path server in
destination ISD 2 before responding to the local path server. In both cases, the
local path server returns up to k up- and down-segments to the requesting source
(where k is a small integer set to 5 in the current implementation). If the up-
and down-segments end at different core ASes, then core segments connecting
the core ASes are returned as well.

2.1.3 PCB and Path-Segment Selection

Among the received PCBs, ASes must choose a set of PCBs to propagate fur-
ther, and a set of path segments to register. These PCBs and path segments are
selected based on a path quality metric with the goal of identifying consistent,
diverse, efficient, and policy-compliant paths. Consistency refers to the require-
ment that there exists at least one property along which the path is uniform,
such as an AS capability (e.g., anonymous forwarding) or link property (e.g.,
low latency). Diversity refers to the set of paths that are announced over time
being as path-disjoint as possible to provide high-quality multipath options.
Efficiency refers to the length, bandwidth, latency, utilization, and availability
of a path, where more efficient paths are naturally preferred. Policy compli-
ance refers to the requirement that the path adheres to the AS’s routing policy.
Based on past PCBs that were sent, a beacon server scores the current set of
candidate path segments and sends the k best segments as the next PCB. To
provide some concreteness to this description, we currently use k = 5, and send
PCBs every 5 seconds to each neighbor over each provider-to-customer link.
SCION intra-ISD beaconing can scale to networks of arbitrary size, because
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each inter-AS link carries the same number of PCBs regardless of the number
of PCBs received by the AS.

Inter-ISD beaconing operates similarly to intra-ISD beaconing, except that
inter-ISD PCBs only traverse core ASes. The same path selection metrics apply,
where an AS attempts to forward the set of most desirable paths to its neighbors.
A difference, however, is that an AS forwards kK PCBs per source AS, with
k = 3. The periodicity is also reduced; we forward PCBs once a minute or
upon path changes. Similarly to BGP, this process is inherently not scalable
(as the overhead grows linearly with the number of core ASes); however, as
the number of ISDs and the corresponding number of core ASes is small, this
approach is viable.

2.1.4 Link Failures

Unlike in the current Internet, link failures are not automatically resolved by
the network, but require active handling by end hosts. Since SCION forwarding
paths are static, they break when one of the links fails. Link failures are handled
by a three-pronged approach that typically masks link failures without any
outage to the application and rapidly re-establishes fresh working paths:

* Beaconing occurs every few seconds, constantly establishing new work-
ing paths.

e The SCION control message protocol (SCMP) (SCION-equivalent of
ICMP) is used for path-segment revocation. As described in detail in
Section 7.3, failed links result in rapid erasure of affected path segments
from path servers.

* SCION end hosts use multipath communication by default, thus masking
link failures to an application with another working path. As multipath
communication can increase availability (even in environments with
very limited path choice [8]), SCION beacon servers actively attempt to
create disjoint paths, SCION path servers make an effort to select and
announce disjoint paths, and end hosts compose path segments to achieve
maximum resilience to path failure. Consequently, we expect that most
link failures in SCION will be unnoticed by the application, unlike the
frequent (although mostly brief) outages in the current Internet [131, 144].

2.1.5 Intra-AS Communication

Communication within an AS is handled by existing intra-domain communica-
tion technologies and protocols such as IP with Software-Defined Networking
(SDN), or Multi-Protocol Label Switching (MPLS). Figure 2.2b on Page 19
shows one possible intra-domain path through the magnified AS.
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2.2 Data Plane

While the control plane is responsible for providing end-to-end paths, the data
plane ensures packet forwarding using the provided paths. A SCION packet
minimally contains a path; source and destination addresses are optional in
case the packet’s context is unambiguous without addresses. Consequently,
SCION border routers forward packets to the next AS based on the AS-level
path in the packet header (which is augmented with ingress and egress interface
identifiers for each AS), without inspecting the destination address and also
without consulting an inter-domain routing table. Only the border router at the
destination AS needs to inspect the destination address or packet purpose to
forward it to the appropriate local host.

An interesting aspect of this forwarding is enabled by the split of locator (the
path towards the destination AS) and identifier (the destination address) [83]:
the identifier can have any format that the destination AS can interpret, since
only the destination needs to consider that local identifier. In other words, an
AS can select an arbitrary addressing format for its hosts, e.g., a 4-byte IPv4, 6-
byte medium access control, 16-byte IPv6, or 20-byte accountable IP (AIP [7])
address. A nice consequence is that an IPv4 host can directly communicate
with an IPv6 host over SCION.

In the next two sections, we describe how an end host combines path segments
into an end-to-end forwarding path, and how border routers forward packets
efficiently.

2.2.1 Path Combination

After name resolution and path lookup, the end host obtains path segments
that need to be combined into an end-to-end path. A valid SCION forwarding
path* can be created by combining up to three path segments, in the following
ways (all combinations are illustrated with sample paths depicted in Figure 2.5):

* Immediate combination of path segments (e.g., B— D): the last AS on
the up-segment (core AS Z3) is also the first AS on the down-segment. In
this case, the simple combination of an up-segment and a down-segment
creates a valid forwarding path.

¢ AS shortcut (e.g., B— C): the up-segment and down-segment intersect
at a non-core AS (e.g., K). In this case, a shorter forwarding path can be
created by removing the extraneous part of the path.

* Peering shortcut (e.g., A — B): a peering link (e.g., L — K) exists
between the two segments, so a shortcut via the peering link is possible.
As in the AS shortcut case, the extraneous path segment is cut off. The
peering linki'couldibertraversingito a different ISD.
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Figure 2.5: ISD with path segments for ASes A, B, C, D, and E.

* Combination with a core-segment (e.g., A — D): the last AS on the
up-segment is different from the first AS on the down-segment. This case
requires an additional core-segment (e.g., Z; — Z») to connect the up-
and down-segment. If the communication remains within the same ISD
(A — D), alocal ISD core-segment is needed; otherwise (e.g., A — I in
Figure 2.1), an inter-ISD core-segment is required.

* On-path (e.g., A — E): the destination AS is directly on the path to the
ISD core, so a single up-segment is sufficient to create a forwarding path.

Once a forwarding path is chosen, it is encoded in the SCION packet header,
which makes inter-domain routing tables unnecessary for border routers: both
the egress and the ingress interface of each AS on the path are encoded as
packet-carried forwarding state (PCFS) in the packet header. The destination
can respond to the source by inverting the end-to-end path from the packet
header, or it can perform its own path lookup and combination.

2.2.2 Forwarding

Routers can efficiently forward packets in the SCION architecture. In particular,

the absence of inter-domain routing tables and the absence of complex longest IP
e i e e ent routers enables construction of faster and

discuss in more detail in Chapter 14.
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The SCION packet header contains a sequence of hop fields (HF), one for
each AS that is traversed on the end-to-end path. During forwarding, each
AS inspects its respective HF in the packet header. The HF contains interface
numbers of the ingress and egress links, which are essentially descriptors of
the links across which the packet is entering and exiting the AS. Figure 2.4 on
Page 22 depicts how the HF information is assembled in the PCB as part of the
beaconing process.

During packet forwarding, a SCION border router at the ingress point of the
AS first verifies that the packet entered through the correct ingress interface
corresponding to the information in the HF. If the packet has not yet reached
the destination AS, the egress interface defines the egress SCION border router
— in which case native intra-domain routing (e.g., OSPF, MPLS) is used to send
the packet from the ingress SCION border router to the egress SCION border
router.

2.3 Security Aspects

For protection against malicious entities and to provide secure control and data
planes, SCION is equipped with an arsenal of security mechanisms.

Similarly to BGPsec [158], each AS signs the PCBs it forwards. This
signature enables PCB validation by all entities. To ensure path correctness,
the forwarding information within each packet-carried forwarding state (PCFS)
also needs to be cryptographically protected, but signature verification would
hamper efficient forwarding. Thus, each AS uses a secret symmetric key that
is shared among beacon servers and border routers and is used to efficiently
compute a message authentication code (MAC) over the forwarding information.
The per-AS information includes the ingress and egress interfaces, an expiration
time, and the MAC computed over these fields, which is (by default) all encoded
within an 8-byte field that we refer to as the hop field (HF). Excluding a few
flag bits, the structure of the HF is at the discretion of each AS and requires no
coordination with any other AS — as long as the AS itself can extract how to
forward the packet on to the next AS.

The specified ingress and egress interfaces uniquely identify the links to the
previous and following ASes. If a router is connected via the same outgoing
interface to three different neighboring ASes, three different egress interface
identifiers would be assigned. The HF’s expiration time can be set on the
granularity of seconds or hours, depending on the path type.

2.3.1 Algorithm Agility

In terms of cryptographic mechanisms, SCION provides algorithm agility,
so that cryptographic methods can be easily updated and exchanged. The
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MAC validation of hop fields is per-AS, so an AS can independently (without
interaction with any other entity) update its keys or cryptographic mechanisms.
We support multiple signatures by an AS, thus, an AS can readily deploy a new
signature algorithm and start adding those signatures as well. A component
of the path-segment and PCB selection metric will favor creating paths where
each AS on the path supports the new algorithm.

2.3.2 Authentication

Authentication in SCION is based on certificates, which bind identifiers to
public keys and carry digital signatures that are verified by roots of trust, i.e.,
public keys that are axiomatically trusted.! One challenge is how to achieve
trust agility to enable flexible selection of trust roots, resilience to private key
compromise, and efficient key revocation.

SCION allows each ISD to define its own set of trust roots, along with the
policy governing their use. Such scoping of trust roots within an ISD greatly
improves security, as compromise of a private key associated with a trust root
cannot be used to forge a certificate outside the ISD. An ISD’s trust roots and
policy are encoded in the trust root configuration (TRC). The TRC has a version
number, a list of public keys that serve as roots of trust for various purposes, and
policies governing how many signatures are required for performing different
types of actions. The TRC serves as a way to bootstrap all authentications.

We now briefly discuss two properties offered by the TRC. Trust agility
enables the selection of trust roots used to initiate the validation of certificates.
A user can thus select an ISD that she believes maintains a non-compromised
set of trust roots. A challenge with trust agility is to maintain global verifiability
of all entities, regardless of the user’s selection. SCION offers this property by
requiring all ISDs with a link between them to sign each other’s TRCs — thus,
as long as a network path exists, a validation path exists along that network
path. Efficient revocation of trust roots is the second important property. In
today’s Internet, trust roots are revoked manually, or through OS or browser
updates, often requiring a week or longer until a large fraction of the Internet
population has observed such revocations. There is also a long tail of devices
and installations that apply revocations very late or never. In SCION, PCBs
carry the version number of the current TRC, and the updated TRC is required
to validate that PCB. An AS that realizes that it needs a newer TRC can contact
the AS from whom it has received the PCB. Following the distribution of PCBs,
an entire ISD updates the TRC within tens of seconds.

The authentication of control-plane messages has availability as the main
requirement, since the control plane provides communication paths upon which

Our reason for not using self-certifying identifiers [7, 180] for long-term identities is their
inherent inability to be revoked and the complexities involved with key updates. For short-
term identities, however, we do appreciate their features.
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other mechanisms rely. Once end-to-end communication is established, ad-
ditional entities can be contacted to achieve a more secure authentication of
end entities (e.g., web servers). The Attack-Resilient PKI (ARPKI) [23] is
a highly secure PKI system based on log servers* that keep a public log of
all certificates to monitor CAs’ operations. In turn, CAs and validators verify
the content of log servers. By requiring multiple signatures on certificates,
and by adding signatures on all operations, we create a situation where mul-
tiple malicious trusted entities within the same ISD are needed to perform a
man-in-the-middle attack on a single domain. To further increase security, we
combine ARPKI with PoliCert, which enables domains to specify their detailed
security policy [235]. By storing the domain policies in an ARPKI log, policy
consistency and integrity are ensured. In concert, ARPKI and PoliCert achieve
a high level of security, as all PKI attacks we have witnessed in the past decade
would have been avoided in this framework.

The ISDs and the ARPKI system used in SCION address the problem of
CA compromise, as a CA’s authority is scoped to the ISDs in which the CA is
active, and as multiple trusted entities need to be compromised to perform a
successful man-in-the-middle attack. Moreover, the SCION trust roots update
mechanism enables revocation within tens of seconds, enabling quick recovery
from compromise.

More details on SCION’s authentication infrastructure are provided in Chap-
ter 4.

2.3.3 SCION Control Message Protocol (SCMP)

The control plane includes the SCION Control Message Protocol (SCMP),
which is similar to the current Internet control message protocol (ICMP), but
authenticated and adapted to SCION. One challenge in the design of SCMP was
how to enable efficient authentication of SCMP messages, as the naive approach
of adding a digital signature to SCMP messages could create a processing bot-
tleneck at routers when many SCMP messages would be created in response
to a link failure. We thus make use of an efficient symmetric-key derivation
mechanism called Dynamically Re-creatable Key (DRKey, see Section 12.5).
In DRKey, each AS uses a local secret key known to its SCION border routers
to derive on the fly a per-AS secret key using an efficient pseudorandom func-
tion (PRF). Hardware implementations of modern block ciphers enable faster
computation than a memory lookup from DRAM, and therefore such dynamic
key derivation can even result in a speedup over fetching the key from memory.
For verification of SCMP messages, the destination AS can fetch the derived
key through an additional request message from the originating AS, which is
protected by a relatively slow asymmetric operation. However, local caching
ensures that this key only needs to be fetched infrequently. As a consequence,
SCION provides fully'secured:controlimessages with minimal overhead.
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2.3.4 DDoS Defenses

SCION offers several complementary defenses against link-flooding DDoS
attacks, which frequently disrupt daily-life communication (e.g., by exploiting
vulnerabilities of IoT devices [138] and launching attacks against I'T-security
blogger Brian Krebs in September 2016 [140], or against the DNS infrastructure
causing outages for Twitter, Spotify, and Reddit in October 2016 [137]).

The SCION architecture comes by default with three mechanisms that provide
a strong defense against DDoS attacks:

¢ Non-registered (or hidden) path segments: An AS can prevent an
adversary from sending traffic to it by not publicly announcing its down-
segment on the path servers. A destination thus cannot be reached, unless
it explicitly permits a sender to send traffic. This approach, referred to as
off-by-default [19], is explained in more detail in Section 7.2.5.

¢ Short-lived paths: Each SCION path segment has an expiration time,
which is set in a PCB to provide several hours of validity. A careful
administrator of an AS can let a path segment age and only announce it
briefly before the expiration time. For instance when a path segment p
that expires within 5 minutes is publicly announced at a path server, then
p can only be used to attack the destination AS for at most 5 minutes. The
approach here is to publicly announce only short-lived path segments,
and to provide longer-lived path segments only to trusted and verified
senders.

* Multipath communication: Because SCION uses multipath communi-
cation by default, an adversary has to congest all paths instead of only
the single path that is currently used. This approach will prevent attacks
that are unable to congest all network paths simultaneously: for example
consider a multi-homed domain with two providers, with a 1 Gbps link
to each provider. In the current Internet, usually only one of the links
will be the active link that carries all incoming and outgoing traffic. If the
attacker has a capacity of 1.5 Gbps for example, it can congest that link.
Once the victim attempts to change to the other link, the attack traffic will
simply follow and congest the alternative link. With multipath communi-
cation, however, whichever link the adversary clogs, the other link will
still be available and thus communication is always ensured. In summary,
multipath communication forces the adversary to simultaneously clog
all paths that are available to the victim, which requires a larger attack
capacity and access to all paths.

Furthermore, SCION offers two extensions to improve availability and defend
against DDoS attacks:

* The SIBRA extension (Chapter 11) enables fine-grained inter-domain
bandwidthrallocations;tosguarantee availability even during large-scale
DDoS attacks. SIBRA enables fine-grained temporal access, in which
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so-called ephemeral paths expire within tens of seconds, putting a rapid
stop to a misbehaving sender.

* The OPT extension (Chapter 12) provides source authentication to pre-
vent attacks with spoofed source addresses. Spoofed victim source ad-
dresses are used in reflection-based amplification attacks to disguise
the attacker’s identity and to redirect the response traffic to the actual
victim [214].

2.4 Use Cases

SCION improves many aspects of the current Internet. This section highlights
some of the applications and use cases that demonstrate unique properties and
benefits offered by the new architecture.

2.4.1 High-Availability Communication

Highly available communication is important in many contexts, in particular for
critical infrastructures such as financial networks and industrial control systems
used for power distribution. Internet outages have been known to wreak havoc
on day-to-day operations, for example preventing ATM withdrawals or payment
terminal operations [238]. SCION’s control-plane isolation through ISDs, its
stable data plane, and its multipath operation all contribute to higher availability.

Business continuity refers to the uninterrupted operation of an organization.
Business continuity is currently highly dependent on communication. We can
witness the increasing inter-connectedness required for business operations
when network outages cause a disruption of a surprising number of operations.
For instance, when Telecom Malaysia wrongly announced 179,000 IP prefixes
to Level3, it caused global outages for 2 hours, even affecting ATM operations
in Sweden [238].

Here are a few examples of sectors where availability is crucial:

* Financial services require highly available communication networks,
for instance for the distribution of stock market data, real-time market
trading, or transaction processing. While critical communication is often
sent over leased lines, it is not economical to pervasively use leased lines
between all communicating parties. In this setting, SCION can offer
higher availability than the legacy Internet at a lower price than a leased
line.

High availability for communication is also important in blockchain
applications such as bitcoin mining, where a disconnected mining pool
does not learn of newly mined coins and is wasting processing on finding
irrelevantycoinsypSimilarlyspandisconnected mining pool cannot post
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its found coins, which will likely be ignored once connectivity is re-
established. Both of these cases occur with high probability if the mining
pool’s computation capacity is less than half the total mining capacity,
which is the case for individual mining pools [12].

¢ Critical command-and-control infrastructures — such as air-traffic, power-
grid, or power-plant control systems, or public safety emergency commu-
nication — require very high communication availability. Communica-
tion disruptions can lead to outages with significant cost for industry and
danger for society.

* Governments require high communication availability especially during
crisis situations. Examples of critical communication include cables
to foreign embassies, law enforcement communication, or access to
databases for verifying documents at a country’s border.

With SCION’s resilience against network-layer DDoS attacks, prevention
of prefix hijacking, and data-plane isolation, communication over the regu-
lar SCION network can achieve a level of availability that approximates the
availability of leased lines. In addition, the SIBRA extension, as described in
Chapter 11, offers an extended level of availability through a concept we call
DILL, which stands for dynamic inter-domain leased line. DILLs provide a
lower bound on the guaranteed bandwidth at inter-domain scale, regardless of
the bandwidth requirements of other ASes.

2.4.2 Path Transparency, Path Control, and Compliance with
Traffic Flow Regulations

Packets do not always directly reach their destination via the shortest path.
Instead, in current practice, many Internet paths take detours. While some
extreme cases of detours are due to prefix hijacking [63, 160, 162], most detours
are taken for economic reasons or are simply due to the preferred connectivity
of ISPs. As a consequence, traffic that would be expected to stay within a
geographic area is often routed through nearby countries. For example, paths
connecting sources and destinations within Switzerland are sometimes routed
through Frankfurt or London, or traffic that would be expected to stay within
continental Europe is routed through London.

Path control and transparency are important properties when a sender wants
to influence and learn about the ASes that sensitive data will traverse (for
legal, secrecy, or safety reasons). For instance, banking or medical data, which
is typically bound by strict data privacy regulations, can be constrained in
SCION to traverse only selected authorized ASes: a source knows the AS-level
path that a packet will follow based on the hop fields in the packet header.
Such packet-carried forwarding state in the packet header provides not only
transparency,.but also.path.control by letting the source node select the paths
amongst a set of paths provided by path servers. Path transparency and control
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enable an organization to achieve compliance with laws or regulations that
require traffic to be constrained within a jurisdiction. These properties can be
further strengthened by SCION’s OPT extension (Chapter 12). In a nutshell,
OPT provides the receiver with a cryptographically verifiable guarantee that a
sequence of ASes were all traversed in the correct order.

2.4.3 Inter-domain Traffic Engineering

In the legacy Internet, only rudimentary forms of inter-domain path control and
traffic engineering are possible. For outgoing traffic, one can at best control
the next ISP, but only if an AS is multi-homed. A little more path control is
available to direct incoming traffic, as an AS can decide to which upstream ISP
to send a BGP update. However, to achieve high availability for outages, an
IP prefix should be announced to each upstream ISP. AS path pre-pending is a
technique that enables a very limited form of path control for incoming traffic;
but this technique will not be available in a secure version of BGP, for instance
in BGPsec [157,158].

In intra-domain networks, software-defined networking (SDN) has revo-
lutionized path control; for example, Google has achieved higher network
utilization with their B4 system [124]. Analogous to B4’s intra-domain path
control, SCION makes inter-domain path control available through path regis-
tration. An AS can select the down-segments that are announced to the path
servers. Hidden paths can be used, which are only communicated to senders
who are selected to use them (as discussed in Section 2.3.4). Much path control
is available to the sender, who can select which end-to-end path the packet will
follow. We anticipate that this level of path control creates a strong reason for
adopting SCION.

2.4.4 High-Speed Web Browsing

Current congestion control hinders high-speed communication because the
sender and receiver require time to determine their sending rate and to contin-
uously perform congestion control. Consequently, the sending rate is usually
below the maximum possible rate. In SCION, through the SIBRA extension
(Chapter 11), the sender performs a resource reservation with its initial packet,
and the receiver will likely obtain a reservation with a high sending rate, which
it can immediately start to use on the reverse path. With such a reservation, a
given bandwidth is provided, so no congestion control is needed; consequently,
the web server can immediately start sending data at a high rate to the browser.
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2.4.5 Mobility Support

With the proliferation of mobile devices, supporting reliable communication
can be challenging since these devices frequently connect to and disconnect
from (sometimes several) networks. SCION supports high availability and
mobility through multipath communication. Moreover, SCION provides a
header extension to inform the other party of new down-segments, such that
a mobile device that obtains a new address as it connects to a new network
can inform the other party about its new down-segment. Failing paths are
discarded and new paths are dynamically discovered transparently to users and
applications. One challenge, however, is that both sender and receiver might
simultaneously move to a new network, and all the previously established paths
might fail at the same time. In this unlikely scenario, a name resolution server
and a path server need to be contacted to fetch fresh down-segments for the
other party [220].

2.5 Incentives for Stakeholders

While SCION offers a wide assortment of security, availability, and performance
benefits over current-generation networks, its lack of direct compatibility with
BGP may lead to adoption resistance. This resistance can stem from the notion
that the cost of changing to the new architecture will be higher than the benefits
obtained, or that it is risky to take on a new architecture that may not find
widespread adoption. In this section, we discuss deployment incentives to
dissipate such reservations.

2.5.1 End Users

End users in SCION benefit primarily from higher throughput afforded by the
use of native multipath communication, and from lower latency due to path
control and packet-carried forwarding state. SCION paths are selected based
on performance metrics, which translate to better quality of service (such as
audio, video, and file transfers) and generally shorter transfer delays. Although
the increased size of SCION packets sacrifices goodput, we anticipate that the
continuous path optimization of SCION’s multipath system will compensate
for the higher overhead.

End users also benefit from higher availability (i.e., fewer Internet outages)
again due to the multipath communication that is used by default. Even if
the user’s local ISP does not employ SCION, it is possible to provide the
benefits of multipath communication via access tunnels as described in Sec-
tion 10.1.2. Moreover, the SCION-IP gateway (Section 10.3) provides an
incremental deployment approach, which enables users to use SCION without
requiring changes to software on their devices.



2.5 Incentives for Stakeholders 35

Path control gives users higher assurance when performing security-critical
tasks such as online banking or shopping. Using SCION, users gain trans-
parency over the communication path to the destination server, allowing them
to include or exclude specific paths traversing ASes that are not trusted.

The SCION end-to-end public-key infrastructure offers strong assurance that
a contacted web site is the correct entity — fending off man-in-the-middle
attacks that could eavesdrop on or alter information sent on a TLS connection.
As a consequence, users can perform secure transactions over the Internet with
higher confidence.

Finally, SCION extensions (such as Hornet [49] and SIBRA) provide users
with a range of additional benefits, such as high-speed anonymous communica-
tion and guaranteed bandwidth.

2.5.2 ISPs

ISPs can create new revenue streams by offering services based on SCION.
ISPs that enable SCION can create services for customers who demand higher
availability than BGP can provide, but who cannot afford dedicated leased
lines. In addition to lower operating cost, SCION gives early adopters increased
resilience to network attacks, higher availability, and better path control. ISPs
may even offer SCION services to customers of other ISPs through access
tunnels. SIBRA, for example, enables inter-domain traffic guarantees, which
ISPs cannot offer today unless they operate a global network.

Since SCION PCB propagation policies are more expressive than is possible
in BGP, ISPs benefit from finer control of traffic traversing their domain (see
Section 10.9), which can help with traffic engineering.

SCION’s path transparency properties can provide evidence to regulators and
customers that ISPs are not violating network neutrality [194].

Finally, SCION’s ISDs and secure operation help to minimize the impact of
an ISP’s configuration errors, which can simplify ISPs’ operations.

2.5.3 Businesses

Businesses or corporations using SCION benefit from path management for
incoming and outgoing traffic, path transparency and control, attack resilience,
and highly available communication. One particular advantage is that through
SCION, a business can ensure that traffic does not leave an ISD. This is impor-
tant for complying with data privacy laws, which vary from country to country.
For example, a recent European Union (EU) ruling declared that companies
with an EU presence had to comply with EU data privacy laws, and could no
longer make use of “safe harbor” when storing data on servers in approved
countriesp[62jspltsispunclearswhethersforwarding and caching data also falls
under this ruling, but SCION allows businesses to specify their traffic policies.
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While control over outgoing traffic has so far proven to be an attractive
incentive for businesses, control over inbound traffic should also provide an
attractive feature. Corporations offering network services to a restricted set
of clients (e.g., banks) may want to allow incoming traffic only from those
authorized clients or through authorized ISPs. SCION paths are flexible enough
to allow this by distributing certain paths to specific authorized entities, rather
than announcing them globally.

2.5.4 Governments

Governments using SCION can benefit from the same advantages as businesses,
but additionally benefit from avoiding the use of a global trust root. As shown
in Section 13.8, a global trust root provides a kill switch that can cause entire
networks to be taken offline, which could be particularly damaging in the case
of government networks. Like businesses, governments will also value the path
control facility that will ensure their traffic traverses ISPs they trust.

The open-source nature of the SCION codebase allows governments to build
their own hardware to reduce their reliance on untrusted foreign manufacturers.
The codebase can also be inspected and maintained by trusted developers.

2.6 Deployment

Deployability plays a key role in the success of any network architecture. To
this end, we have designed SCION to be deployable (by both ISPs and end
users) without requiring substantial changes to the existing infrastructure.

2.6.1 Incremental Deployment

As a minimum, an ISP needs to deploy only a single border router capable of
encapsulating and decapsulating SCION traffic as it leaves, enters, or traverses
its network. SCION ASes must also deploy certificate, beacon, name, and path
servers. These servers can run on commodity hardware and can optionally
be replicated for increased availability. The current version of the SCION
codebase uses IP for internal AS communication, which allows the use of
existing intra-domain networking infrastructure and configuration.

We envision that ISDs will grow organically within an area with homoge-
neous trust. Tier-1 ISPs within those ISDs would become core ASes. SCION
facilitates the evolution of ISD and AS structure through efficient updates to
the TRC.

Deployment of SCION to end-user sites (e.g., homes or businesses) is de-
signed to require little effort as well, initially needing no changes to hosts or
internal network communication equipment. For initial deployment, we achieve
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customer-friendly conditions through a gateway device that can be installed in
a network to enable both SCION and standard Internet communication. The
SCION-IP gateway replaces a home access router and transparently enables
any type of communication (legacy IPv4/IPv6 or SCION), as described in
Section 10.3.

2.6.2 Deployment Caveats and SCION Disadvantages

The deployment and structure of ISDs is hard to predict, as is which ASes
within an ISD will or should become core ASes. We envision that among
a group of ASes that deploy a top-level ISD, the AS or ASes that can form
peering agreements with core ASes in other ISDs should become core ASes in
their own ISD. However, SCION itself does not require or impose strict rules
regarding the allocation of ISDs; ISDs can overlap, which means an AS can
belong to several ISDs. Sub-ISDs are possible as well, offering the flexibility to
start an ISD without needing to peer with core ASes of other ISDs and enabling
finer-grained control over routing isolation and authentication. In this context,
the important properties SCION offers are path control and transparency: as
long as communicating hosts can select and inspect the paths of their packets,
the question of ISD partitioning is of secondary nature.

A challenge that could arise is that each AS will attempt to be its own ISD
or will want to be part of the ISD core. While too many top-level ISDs will
pose a problem for SCION scalability, we observe that economically sound
decisions will lead to larger ISDs due to economies of scale — because the
startup costs of a core AS are higher than those of a non-core AS, the operation
of a large ISD will amortize the cost over more non-core ASes. Moreover, ASes
preferentially associate with larger ISDs, which can offer better connectivity
to other ISDs as well as to other ASes within the ISD. On the other hand, ISD
growth is limited to the extent that entities can agree on the ISD’s TRC (i.e.,
roots of trust). Finally, ASes desiring to be part of the ISD core are assessed in
the same way in which current ASes assess peering: an AS is permitted into
the core if the current core ASes deem it to be large enough to fulfill core AS
duties (which include, for example, participating in beacon and path server
replication).

SCION ASes need to manage cryptographic keys, which requires additional
effort to securely administer. As a security architecture, every AS has to have a
public-private key pair, and obtain a signature on the public key. Although man-
aging cryptographic keys can be a challenge for some ASes, it is a necessity for
any secure network architecture. In our development, we are building systems
to simplify the overhead of managing cryptographic keys, for instance through
our CASTLE system [169], which offers a local low-rate CA environment built
from off-the-shelf components. To further mitigate the risks associated with the
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management of cryptographic keys, SCION reduces the effect of key loss and
compromise by offering approaches for resilience and quick recovery.

As expected in architectures with PCFES, packet headers are necessarily larger.
Larger headers place a limit on goodput, since payload space is traded for
header space. The current SCION codebase implements the HF as an 8-byte
field. Since every AS on an end-to-end path has to be represented through a
corresponding HF, the overhead increases linearly with the number of ASes on
the path. However, given that the average AS path in today’s Internet is four
hops long (and decreasing) [66, 141], the overhead introduced by SCION should
not exceed around 50 bytes per packet on average. The performance penalty
of transmitting more packets appears reasonable since per-packet forwarding
performance can be faster than for forwarding-table-based architectures. While
the default header size has not turned out to be a performance disadvantage
in our testing environment, many of the proposed SCION extensions further
increase the header size.

Due to path dissemination and registration dynamics, SCION beacon and
path servers can incur a high overhead under specific circumstances. For
example, if a given link’s state were to fluctuate frequently between available
and unavailable (due to error, hardware fault, or an adversary), the beacon
server would need to constantly update the set of paths that include that link,
and serve new paths excluding that link. We expect that this case will be rare,
but also easily detectable. Additionally, higher quality (uptime, availability)
links will have a higher probability of selection, minimizing the impact of rapid
path fluctuations.

We believe that the basic building blocks of SCION are relatively straight-
forward to understand and provide many beneficial properties for applications.
However, as more extensions and alternative PKIs are added to the architecture,
the operational complexity of the architecture increases correspondingly. We
believe that this additional complexity is worth the security, efficiency, and
availability guarantees provided by the extensions. It is ultimately up to the
networking and research community to decide which of these extensions will
be deemed worthwhile for pervasive deployment.

2.6.3 SCION Network Deployment

We have deployed a global SCION network, which we are actively using to vet
SCION’s functionality and security. The current network has about 50 border
routers and servers deployed in ASes around the world, with new nodes joining
the network on a weekly basis. The deployment status as of December 2016
is described in more detail in Section 10.1.4. Details and requirements for
sponsoring a SCION node can be found on our website. The SCION testbed,
enabling any researcher to use the SCION network, is described in more detail
in Section 10.7.
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2.7 Extensions

SCION’s extensible architecture enables new systems that can take advantage
of the novel properties and mechanisms provided. As compared to the current
Internet, most of the benefits can be afforded through the use of PCFES, path
transparency, and control. We briefly describe three systems that have been
built as extensions to SCION.

Path validation. SCION, through its use of PCFS, paves the way for the
Origin and Path Trace (OPT) mechanism (Chapter 12). OPT enables the
sender, receiver, and routers to cryptographically verify the path that the packet
traversed. By leveraging the DRKey mechanism (Section 12.5), routers can
efficiently derive their key, verify the path, and update the path validation fields.

Anonymity and privacy. PCFS also provides advantages for privacy. With
PCFS and path transparency, the source is able to select paths that appear more
trustworthy (e.g., those that do not traverse certain ASes). In addition, the
packet header can be further obfuscated such that ASes on the path cannot
learn identifying details about the source or the destination, unless they are
immediately connected to one of them. Proposals such as LAP [113] and
HORNET [49] leverage SCION’s infrastructure to offer high-bandwidth and
low-latency anonymous communication.

DDoS defense. The hierarchical organization of ASes into a manageable
number of ISDs enables neighbor-based contracts between pairs of core ASes,
which in conjunction with path segments inside the ISDs allows for establishing
efficient bandwidth guarantees between any two end hosts (more details are
presented in Chapter 11 and Section 13.7.1). Such bandwidth guarantees are
provided by the SIBRA extension to prevent DDoS attacks at the architectural
level: independent of the number of distributed bots, end hosts obtain protection
against Internet-wide link-flooding attacks, one of the major threats in today’s
Internet. The SIBRA extension offers powerful mechanisms for DDoS defense,
as it guarantees a lower bound on the bandwidth between any pair of ASes [22],
which cannot be lowered even by a large-scale botnet using new types of DDoS
attacks such as Crossfire [129] and Coremelt [231].

2.8 Main Contributions <

The SCION architecture introduces many new concepts and contributions.
Although prior work has proposed related concepts and methods, many of
which.we. build-upons.we-believe that.SCION has advanced the state of the art
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by creating a coherent architecture that can be deployed and used in practical
environments.

Throughout the book, we highlight some chapters or sections with a diamond
symbol in the title to indicate research, engineering, and deployment contribu-
tions that we believe are particularly important and interesting. In the remainder
of this section, we briefly describe these contributions.

2.8.1 Isolation Domains

The concept of network partitioning and hierarchical domains has been consid-
ered since the early days of the Internet [34,46,47,56,57,127,134,232,242,259].
In addition to the scalability sought by previous approaches, SCION’s concept
of ¥ isolation domains (ISDs) (Chapter 3) provides strong security guarantees
including meaningful trust roots and the absence of global kill switches. Isola-
tion domains provide control-plane isolation, trust root scoping, and data-plane
transparency. Most SCION protocols and extensions rely and build on these
properties.

As a design principle, SCION does not require any globally trusted party, and
ISDs can operate independently and autonomously. However, there must be a
way for them to join the network and be discovered. To this end, in Chapter 35,
we present the € ISD coordination mechanism, which operates in a distributed
fashion without any globally trusted entities. With our mechanism, individual
trust decisions made solely by ISDs enable global trust verification, similarly to
the PGP web of trust [267], although operating in the constrained environment
of large-scale ISPs. The mechanism is based on the rule that trust validations
follow routing paths (i.e., commercial relationships). To balance the design
tradeoffs, our system allows inconsistencies but makes them visible. It enables
determination of network topology and connectivity, from any point of the
network, without any central global entity.

2.8.2 Authentication

Another main contribution is SCION’s ¥ authentication infrastructure, which
leverages the properties offered by isolation domains (Chapter 4). ¢ TRCs con-
tain the roots of trust of the SCION authentication infrastructure (Section 4.2.1),
providing scoped trust, fast and flexible trust root updates, and transparent trust
relationships. ¢ The control-plane PKI (Section 4.2.3) is a high-availability
PKI and is designed to secure SCION’s control plane. It ties TRC and cer-
tificate distribution to the dissemination of PCBs, thus removing any circular
dependencies between routing and control-plane PKI operations, which results
in efficiency and high availability. On the other hand, ¥ the end-entity PKI
focuses on achieving high security (see details in Section 4.4). It leverages two
recent proposals (i.e., ARPKI [23,24] and PoliCert [235]). First, it provides
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resilience against a selectable number of compromised trusted parties. Second,
it allows domain owners to express flexible policies on their TLS certificates
and connections.

The control-plane PKI provides network-level authentication, enabling in-
network and end host source authentication, which in turn facilitates construc-
tion of a variety of secure network protocols. ¢ The OPT protocol (Chapter 12)
is a source authentication and path validation scheme. It enables end hosts to
enforce path compliance according to their path selection, and moreover, it
achieves high-speed and stateless operation on routers. OPT relies on ¥ the
DRKey scheme (Section 12.5), an efficient key derivation mechanism. DRKey
allows network entities (e.g., border routers) to derive symmetric keys (shared
with destinations) with a negligible computation overhead and without keep-
ing per-destination state. Due to these properties, we use DRKey for ¢ the
authentication of SCMP messages (SCMP being SCION’s equivalent of ICMP
— see Section 4.2.5 and Section 7.6). To the best of our knowledge, it is the first
Internet-scale control message protocol with authenticated messages.

As a consequence of scoped trust and isolated control plane, SCION ensures
an ¥ absence of global kill switches (Section 13.8). No entity can cause an
outage of an ISD by performing an operation outside the ISD (such as the
revocation of an important key).

2.8.3 Novel Mechanisms and Protocols

Due to its architecture, SCION can intrinsically support multiple novel mech-
anisms and protocols. For instance, ¢ RAINS provides a next-generation
name resolution system (Chapter 6). The control plane allows the definition
of ¥ flexible path policies, enabling implementation of BGP route policies
and definition of policies that cannot be expressed in BGP (Section 10.9). Fur-
thermore, SCION’s ? data plane (Chapter 8) provides highly efficient and
secure packet forwarding. The forwarding path is encoded within each packet
and is cryptographically protected. To make a forwarding decision, the border
router checks whether the relevant information is fresh and was authorized by
its AS. To this end, efficient symmetric cryptography is used. Moreover, the
cryptographic mechanisms required are widely supported by modern hardware;
thus, a high-speed SCION border router can be built on commodity hardware.

Another example is the ¥ AS-level anycast infrastructure (Section 7.5),
which provides a service-oriented infrastructure enabling a packet to be deliv-
ered to the nearest server of a given service. This infrastructure is an especially
powerful mechanism when used for building services that can take advantage
of hierarchical caching.

Although path infrastructures have also been explored in other Internet ar-
chitectures, SCION introduces a novel € secure path revocation system (Sec-
tion 7.3). Our path revocation system works on the link level. Its main novelty
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is a traffic-driven fault detection and failed-link revocation mechanism. The
revocations are disseminated as responses to data packets that encounter a failed
link. In this design, the system quickly disseminates revocations only to entities
that have used failed paths, thus avoiding the overhead of informing entities
that do not use those paths. To the best of our knowledge, it is the first secure
and practical inter-domain link revocation scheme. The scheme also provides
authenticated failed-link localization.

2.8.4 Resource Allocation

Another main contribution is ¥» SIBRA (Chapter 11), a SCION extension that
implements global bandwidth resource allocation. SIBRA’s main objective is to
provide DDoS attack defense, and it is realized through end-to-end bandwidth
allocation. The system provides botnet-size independence, a property that no
prior DDoS defense system could achieve. A main feature of SIBRA is its
per-flow stateless fastpath™ packet forwarding.

2.8.5 Deployment and Evolvability

Finally, SCION makes the following deployment contributions. € The SCION-
IP gateway (Section 10.3) provides an easy and flexible way of interconnecting
SCION with the current Internet. It supports a variety of connection and
deployment variants. The gateway can be used by ISPs, organizations, or
individual users to bootstrap and benefit from the deployment of SCION even
for their legacy clients and legacy IP communication.

Taking into consideration the lessons learned from Internet deployment,
SCION is designed to support and deploy new mechanisms. Flexible extension
mechanisms are built into both the data and control planes (Section 15.1.4 and
Section 15.3.4), which enables the architecture to evolve. Furthermore, in the
spirit of evolvability and maintenance, SCION supports ¥ algorithm agility
(Section 17.1), which is crucial in the context of cryptographic algorithms (as
over time they become weaker or become vulnerable to a newly discovered
attack).
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This chapter discusses SCION isolation domains in more detail. As briefly
sketched in Chapter 2, an isolation domain (abbreviated as ISD to distinguish it
from the common abbreviation ID) constitutes a logical clustering of the Inter-
net’s most coarse-grained organizational unit, namely that of an autonomous
system, or AS for short. An AS is a self-contained network administrated
by a single entity (e.g., by an Internet service provider (ISP) or a university)
and communicates with other ASes through well-defined interfaces based on
contractual business relations. Figure 2.1 on Page 18 sketches how ASes are
grouped into ISDs.

To join an ISD (i.e., become a member of an ISD), an AS needs to be
connected to it, and needs to accept its regulations and policies. An ISD specifies
accepted authorities, which are commissioned and authorized to provide digital
identities and cryptographic keys for the entities inside the ISD.

As we will see in more detail, the term isolation refers to a property of ISDs
that applies to the network’s control plane only. Regarding the network’s data
plane, the important properties of ISDs are transparency and control. In other
words, SCION does not isolate end hosts, nor does it limit communication or
facilitate censorship, as we explain in more detail in the FAQ on Page 409.
SCION rather provides members of ISDs with communication guarantees, with
control over packet routes, and with transparency over forwarding paths.

The natural questions to ask are thus: How can isolation in the control plane
achieve transparency in the data plane? Why is isolation in the control plane
necessary at all? How can the current Internet be structured to best achieve a
desirable level of isolation? We attempt to answer these and related questions
in this chapter.

3.1 Why Isolation?

Before considering the details of how ISDs are implemented in SCION, we are
going to step back and take a look at the rationale behind structuring ASes into
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ISDs. We first note that the concept of letting each ISD agree on individual
policies, keys, and authorities naturally provides an isolation property among
groups of ASes. To indicate the benefits of such a property, we observe that
isolation between ASes is lacking for most features of today’s Internet. Using
the two examples of authentication and routing, we then illustrate why the lack
of a suitably granular isolation property is the main reason for the security and
availability issues that plague the current Internet.

3.1.1 Isolation for Authentication

To understand the problems related to the current Internet’s lack of isolation, one
may consider its authentication infrastructures. At a high level, authentication
infrastructures enable users to verify digitally signed information (such as
names, addresses, routes), assuming that the cryptographic keys necessary for
the verification of such information are correctly distributed. Distributing and
authenticating cryptographic keys in environments with heterogeneous trust,
however, poses a major challenge. This holds for the two most prominent
models of existing authentication infrastructure: monopoly and oligopoly (also
referred to as oligarchy in the literature).

Monopolistic Infrastructures

Infrastructures based on a single root of trust (or a small number of keys held
by a few entities), such as DNSSEC, suffer from the innate problem that all
involved entities must agree on a common root of trust and on the entity that
should manage the root of trust. In the case of DNSSEC, no less than the
entire world has to agree on a common root. The fear of global surveillance
paired with an increase in power of individual nation-states has led ICANN,
the organization responsible for allocating and assigning names in the root
zone of DNS, to issue a statement recommending globalization of Internet
governance [121]. On 1 October 2016, ICANN officially entered the private
sector and transitioned to a “multi-stakeholder model” as its contract with the
U.S. government expired [122].

Besides the administration problem, there is also a serious security hitch
with monopolistic infrastructures: a single root of trust evidently constitutes
a single point of failure. In August 2016, Microsoft inadvertently leaked a
highly permissive signed policy, which was then referred to as a “golden key”.
This policy could not only be used to unlock tablets and phones sealed by
Windows Secure Boot (e.g., to install an alternative operating system), but
also to enable backdoors for mass surveillance purposes [69, 173, 191]. It is
even believed that Microsoft will be unable to fully revoke the policy [252]. In
the case of DNSSEC, a compromise of the global trust root can cause severe
damage tortherentire'worldyessentially| to each host worldwide that relies on
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DNSSEC, directly or indirectly. We observe a significant kill switch here: the
revocation of a DNSSEC certificate for a top-level domain name (such as . com)
would remove that entire top-level domain since its validity would no longer be
verifiable and thus the name resolution would fail. Interestingly, this kill switch
becomes more severe when more cryptographic protection is added to today’s
domain name system. More details on Internet kill switches are provided in
Section 13.8 on Page 325.

Oligopolistic Infrastructures

Infrastructures based on multiple roots of trust, such as the TLS infrastructure,
suffer from weakest-link security — that is, any of the multiple roots, when
compromised, may cause severe damage to any of the entities in the infrastruc-
ture. In other words, each member of the oligopoly has global authority. For
the case of TLS, any certification authority (CA), possibly run by a national
intelligence agency or by a malicious organization, may issue rogue certificates
for any TLS domain. These rogue certificates will be recognized as valid by
today’s standard browsers.

Both the monopoly and the oligopoly model have in common that the scope of
keys is unrestricted. The compromise of any cryptographic signing key enables
man-in-the-middle attacks against billions of hosts around the world. The attack
vector of these large-scale attacks can meaningfully be diminished through the
concept of isolation by structuring the large number of existing entities into
isolated domains, each with its authorities and individually managed keys, and
by limiting the scope of the keys to the respective domains.

SCION resolves these issues by restricting the scope of root keys to ISDs,
and enabling clients to select the TRC(s) they want to use.

3.1.2 Isolation for the Propagation of Routing Information

The process referred to as inter-domain routing is carried out in today’s Internet
by the Border Gateway Protocol (BGP). At a high level, every AS advertises to
other ASes the IP address space for which it is responsible. The information
is propagated to other ASes such that, after some convergence time, every AS
should have learned how to reach any other address in the Internet.

This design works well in most cases, but is vulnerable to misconfigurations
and attacks: a misconfigured AS can unintentionally attract traffic by advertising
wrong addresses to its direct neighbors. More severely, a malicious AS can
launch IP prefix hijacking attacks by deliberately advertising addresses that
the AS does not control. The lack of isolation can lead to problems such as
unavailability and espionage and affect virtually every host in today’s Internet
(see Section 1.1.4 on Page 6 for examples of concrete incidents).



46 3 Isolation Domains (ISDs)

By leveraging the isolation principle, SCION separates the routing infras-
tructure in one ISD from those of other ISDs and thus removes a cause of
many instances of unavailability in today’s Internet. More precisely, SCION
addresses and routes to entities are valid only within the respective ISD. This
means, in particular, that entities outside an ISD cannot affect communication
within that ISD.

An interesting question is whether the isolation of failures and misconfig-
urations may result in undesirable confinements, such as the unreachability
of destinations outside the source ISD. Fortunately, the opposite is true. Not
only is the availability of communication increased due to the impossibility
of external attackers intruding into isolated routing planes, but also because a
well-manageable number of ISDs permits the scalable execution of a secure
inter-ISD routing protocol with cryptographically protected route advertise-
ments. Thanks to the limited number of ISDs, cryptographic keys are easily
disseminated across all ISDs. These keys are used to validate the authenticity
of routing updates across ISDs.

Definition: Isolation Principle

Intuitively, the isolation principle separates the control plane of a domain
(e.g., an ISD) from outside influences. More formally, let Vg be the view
of the control plane for a given domain D residing in an environment E,
i.e., V5 is the set of all messages exchanged inside D’s control plane in
environment E. By environment, we denote the set of outside entities with
which D can communicate. We say that the isolation principle holds for
domain D if for all environments E, we have

VE ~ V5

where @ is the empty environment and ~ denotes indistinguishability
between two views with respect to intra-domain routing messages.

Definition: Isolation Domain (ISD)

An ISD is a set of connected ASes (i.e., forming a connected graph) that
satisfies the following conditions:

¢ All member ASes accept the trust roots and policies described in
the trust root configuration (see Page 63) as managed by the ISD
core.

» The ISD satisfies the isolation principle, i.e., its control plane is
protected against outside influences.
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3.2 The ISD Core

Each ISD is administered by the ISD core, a consortium of one or multiple
autonomous systems referred to as core ASes.

Definition: ISD Core

The ISD core is formed by a set of directly connected ASes, the core ASes.
All members in that set agree that they form the ISD core. They also agree
to perform the following functions:

manage and distribute the ISD’s TRC;

sign the TRCs of neighboring ISDs and endorse other ISDs;

issue certificates to all ASes in the ISD;

provide connectivity to neighboring ISDs;

generate and disseminate inter-ISD path-segment construction bea-

cons (PCBs), also called core PCBs;

» generate and disseminate intra-ISD PCBs;

» provide highly available services (beacon, name (RAINS), path,
certificate, SIBRA, and time servers); and

* maintain a list of all recognized ISDs.

The tasks of the ISD core are broadly divided into two categories: manage
the control-plane public-key infrastructure (PKI), and provide global (inter-ISD)
and local (intra-ISD) connectivity. For the following discussion, we assume
familiarity with the basic SCION concepts described in the previous chapter.

As a foundation for the control-plane PKI, the core ASes establish the trust
root configuration (TRC). Specifically, a TRC defines the roots of trust that
are used to validate bindings between names and public keys or addresses, and
defines a policy on how the TRC can be updated. The ISD core manages and
distributes the TRC. For TRCs to be accepted by other ISDs, they must be
signed by trust roots of neighboring ISDs. Sections 4.1 and 4.2.1 provide more
information on TRCs, their creation, and their dissemination. The core ASes
issue certificates for other ASes in the ISD — the TRC contains the root of trust
public keys to verify these certificates. To enable these operations, core ASes
operate the core certificate servers.

The second major task of the ISD core is to provide local and global con-
nectivity. Core ASes connect to core ASes in other ISDs. To discover paths,
intra-ISD and inter-ISD path-segment construction beacons (PCBs) are emitted
periodically. For path exploration, path registration, and path resolution, core
ASes run the core beacon and path servers. Moreover, every core AS runs a
time synchronization service.

When a new ISD is created, its core must make an announcement to other

ISDsuSinceswerdomotywantstoprelysonsany centralized entity to decide on the
fate of a new ISD, we use a distributed ISD coordination process, which is
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presented in the following section. Through the ISD coordination process, the
ISD core maintains a list of existing ISDs (and their TRCs).

3.3 Coordination Among ISDs

One of the distinguishing properties of the SCION architecture is that it was
designed to operate without any global authority. Developing and deploying a
decentralized authentication infrastructure on a global scale has been a long-
standing problem [35,97]. In SCION, each ISD must be able to derive a
list of existing ISDs. This would be straightforward if we could assume the
existence of a trustworthy authority, or if all participants could agree on who
should be able to join the network, but global consensus is hard to achieve in an
environment with mutually distrusting entities. If consensus was required, some
ISDs could collude and prevent a new ISD from joining the network; a single
entity could also create and control multiple ISDs with the only intention of
gaining influence, which is referred to as a Sybil attack [72]. Instead of relying
on consensus amongst all existing ISDs, we focus on providing transparency
and accountability to deter misbehavior.

The mutual discovery of ISDs follows a distributed approach in which every
ISD builds its own local view of the global ISD topology. Our approach
relies on local consistency and on neighbor-based propagation of authenticated
information. More precisely, new ISDs are announced in advance — to avoid
identifier collisions — by neighboring ISDs, through beacon extensions. This
approach tolerates bogus ISDs (i.e., ISDs with globally unique identifiers but
without legitimate purpose). Transparency, however, allows such illegitimate
ISDs to be detected and ignored.

Each ISD is identified by a unique integer and a description. If a dispute
arises between two or more new ISDs regarding the attribution of an identifier,
these ISDs need to pick a new identifier to announce, or the other ISDs need to
decide which announcement they want to support for a given identifier (if no
agreement is reached between the conflicting ISDs). We present the details of
ISD coordination' in Chapter 5.

3.4 Name Resolution

The mechanism for ISD coordination that we sketched in the previous section
allows each ISD to obtain a list of other ISDs; in this section, we describe how

!In distributed systems, consensus can only be achieved by assuming either (a) the existence of
a trusted centralized authority, or (b) resource parity and coordination among entities [72];
the term “coordination” as used in this context, however, does not imply that all ISDs must
reach a complete agreement. ISD coordination only designates the mutual discovery and the
announcement of ISDs.
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consistency is maintained for name resolution across ISDs without any global
authority. In summary, SCION uses a DNSSEC-like protocol called RAINS
(described in detail in Chapter 6), in which delegation from one zone to another
is performed by a signature identifying a zone key (ZK) for the subordinate
zone, with unique root zone keys (RZK) per ISD. Each such root zone contains
delegations to the authority for each top-level domain (TLD), which in turn
handles resolution for second-level names, and so on.

ISD¢ ISD»> ISD3

RzK

Figure 3.1: ISDs delegate name resolution to the TLD authorities. ISD; has
refused to delegate to the authority of TLD . abc, while ISD; oper-
ates a shadow authority for TLD . abc (see text below). Delegation
assertions are discussed in Section 6.3 on Page 106.

Clients connected to the SCION Internet from different ISDs may therefore
have different views of the global namespace (for example, ISD; and /SD; in
Figure 3.1 have no direct delegations to the .abc TLD). This is an unavoidable
consequence of isolation as an architectural principle: it makes little sense to
build inviolate isolation into each ISD, then delegate the first step in most com-
munication establishment (name resolution) to a non-isolated global DNS root.
On the other hand, a globally consistent namespace is one of the advantages of
the Internet as a platform.

This inconsistency is mitigated by three factors, which the governance models
presented in the next section are intended to support:

* In the typical case, ISDs simply certify authorities for TLDs as shown by
the black arrows in Figure 3.1. In other words, each ISD will delegate
to the same authority for a given TLD, and the chain of signatures will
be identical beyond the ISD root signature of the TLD authority. This
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replaces a single global root with a collection of global roots, which are
mostly, but not completely consistent.

* The remaining inconsistency is generally a consequence of applications
of isolation: (a) An ISD may refuse to delegate to an authority for a
given TLD, because that TLD is of no use to clients connected to it.
This case is depicted by the interrupted red line in Figure 3.1. The
possibility of refusal offers transparency and circumvents censorship in
that any alternative ISD may be used for name lookups. (b) An ISD
may also operate an alternate authority for a TLD, providing additional
due diligence on new registrations or blocking registrations intended for
abuse by malware, for example. This case is depicted by the dotted gray
line in Figure 3.1.

* By adding TLD authority differences to the information that ISDs learn
from each other, this inconsistency can be made transparent at the inter-
ISD level. Anomalies such as name squatting would thus become trans-
parent and could actively be countered.

We refer the reader to Chapter 6 for the details of name resolution in SCION,
and to Section 4.3.1 for the authentication thereof.

3.4.1 Reconciling Naming Consistency and Isolation

The properties of the name resolution system implied by isolation as a first
principle of the architecture mean that, while the information associated with a
domain name (addresses, authorities, etc.) can be guaranteed to be consistent
within an ISD, since each ISD has a global root, naming consistency cannot be
guaranteed across ISDs. Some of this inconsistency can serve to implement
the policies of each ISD (e.g., filtering malware domains published in TLDs),
but other inconsistency is not desirable (e.g., an ISD creating and reserving a
large number of TLDs through name squatting). Managing this inconsistency
requires inter-ISD coordination. This process is detailed in Section 6.5, which
describes the Naming Consistency Observer (NCO), a process run cooperatively
by all ISDs to make isolation-based inconsistency transparent to all participants
in the SCION Internet, thereby providing a method to deter non-desirable
inconsistency.

The NCO also provides a way for the SCION Internet to cleanly inherit the
current global naming root. The set of TLDs accessible through SCION will
necessarily be inherited from the ICANN global root, and changes to this set
of TLDs will continue to be made according to ICANN’s policy development
process. The set of TLDs that each ISD is presumed to start from comes from
this global root. ISDs can, of course, sign additional TLDs not present in the
global root, and the visibility of these TLDs through the NCO makes it possible
for other ISDs to determine whether they want to sign them as well; it may also
make isolated versions of these TLDs available.
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Whether this mechanism will eventually replace the ICANN management of
the global root, or act as an input to ICANN’s process for adding new TLDs to
the set in the global root is a future question for the Internet community at large.
In any case, the global ISD proposed in Section 3.5.4 provides unmodified
access to the ICANN global root.

3.5 ISD Governance Models

Given how central ISDs are to the SCION architecture, the qualities of a SCION-
enabled Internet are in part determined by the policies by which ISDs are created
and connected to the Internet, and how policy-level conflicts among ISDs are
resolved. In this section, we examine several possible sets of policies for inter-
ISD governance, and their implications for SCION’s operation, incremental
deployment, and transition to a SCION-based Internet.

These models are presented primarily to explore the space of possible gover-
nance structures for a SCION-based Internet; we do not envision or condone
any one model as the way forward. Since they are concerned solely with non-
technical conflict resolution among ISDs, elements of different models can
and will be combined. We anticipate that ISD creation will occur organically
following a combination of these models.

Some ISDs may evolve from existing tier-1 ISPs, indicating they will operate
largely as described in Section 3.5.1. On the other hand, jurisdictions may
insist on sovereign authority as in Section 3.5.2, as the root of trust for routing
is a matter of law or regulation; in these jurisdictions, only the national ISD
would be available. In any case, it is likely that the initial governance structures
will at least bootstrap off the current multi-stakeholder model as embodied by
the Internet Engineering Task Force (IETF), the Internet Assigned Numbers
Authority (IANA), regional Internet registries (RIRs), and the Internet Corpora-
tion for Assigned Names and Numbers (ICANN), even if new SCION-centric
governance organizations also evolve. A SCION Internet, in which ASes are
free to be members of multiple ISDs, may evolve both small isolation service
providers (IsSPs) (Section 3.5.3) and a global default domain. These models
will interact with the transition mechanisms described in Chapter 10.

3.5.1 A Bottom-Up Model: Grassroots Deployment

In a bottom-up model, some existing ISPs would begin by creating ISDs and
offering SCION services within their isolation domains to their customers. Full
connectivity within the SCION Internet is therefore provided by tunnels between
SCION islands over a traditional Internet substrate. Eventually, interconnections
or mergers between ISDs will lead to organic growth and increased availability
ofsSCIONconnectivityrandidecreasedsreliance on tunneling, as experience with
the transition to the IPv6 Internet has shown. ASes would become connected to
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the SCION Internet through their existing transit relationships with upstream
providers, and existing peering relationships at Internet exchange points (IXPs).
This incremental deployment model is described and analyzed in Section 10.1.2.

In terms of governance, this model leans on existing structures to bootstrap
itself. ISD numbers would be administered by IANA according to procedures
established through the IETF standards. The SCION core protocols would
therefore need to be published as IETF standards as well. Given the differences
in areas of policy expertise and the relative scarcity of ISD numbers, [ANA
would then delegate this assignment to the RIRs. AS numbers would continue
to be assigned by RIRs according to current policies; an Internet-connected
ISP’s AS numbers could be used in SCION as well. Addresses for SCION-
attached networks would be administered as addresses in the legacy Internet,
and assigned by the RIRs according to their own policies and subject to their
policy development processes. Given exhaustion of IPv4 addresses in each
region, growth in the SCION Internet would therefore predominantly happen
using IPv6 addressing. The naming root for each ISD would be provided by
ICANN, according to its policy process.

The primary advantage of this model is ease of transition and the relatively
lightweight coordination required. ISPs and ASes can each decide according to
their own requirements to join the SCION Internet. To do so, downstream ASes
may either wait for their upstreams to join, or purchase transit from an existing
member of an ISD and tunnel SCION traffic to it. Large ISPs may enter into
agreements with others to form a consortium to operate an ISD; tier-1 ISPs may
even decide to operate ISDs on their own.

These actors would interact with each other in regulatory, governance, and
technical forums in which they already participate: IETF, RIR, ICANN, and
regional network operator groups. Multilateral conflict resolution would be-
come a matter of each RIR’s policy development process, and bilateral conflict
resolution a matter of national or international contract law; new governance
organizations may eventually emerge to take over parts of these roles, as neces-
sary.

This model would mirror the present Internet, which may be seen as both
advantageous and disadvantageous. While the present model does scale well in
terms of administrative overhead, an organic transition inherits all the strengths
and weaknesses in Internet governance of the present Internet, and current
vested interests would retain their advantages. However, given the inertia
inherent in the Internet industry, we envision this model as the default one for
establishment of a SCION Internet.

3.5.2 A Top-Down Model: Sovereign Authority

The grassroots model may not be acceptable within some jurisdictions, which
may insist on sovereign authority over Internet traffic and interconnections.
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Since one property of an ISD is a coherent set of policies and regulations for
managing the addition and removal of ASes from the ISD, and since one of the
widely accepted rights and responsibilities of sovereign entities in international
law is the resolution of conflicts within their territory, it is natural to assume that
some sovereign states will be willing to form ISDs, i.e., country-based ISDs.

A sovereign authority ISD would be created by an internationally recognized
sovereign power. Interconnections between sovereign authorities would be
governed by bilateral or multilateral treaty. A multilateral SCION Internet
treaty could be overseen by an existing international body, for example a United
Nations agency such as the International Telecommunication Union (ITU).
Connection to a nation’s ISD is wholly a matter of national law and regulation,
subject to the terms of the treaties governing interconnections. By contrast,
interconnections between sovereign authority ISDs and other ISDs would be a
matter of international contract law.

This model has several apparent advantages:

* National-level lawmaking and regulatory bodies for telecommunications
already exist in most sovereign states, and they already have competence
for monitoring the activities of telecommunication service providers
(ASes) within their territory. National isolation makes enforcement of
Internet law much easier, as the ambiguity about the law in effect at the
source of traffic or location of content is removed by the nature of the
routing topology.

* Countries with policies on cross-border traffic routing, whether to better
regulate the handling of Internet traffic or to defend their citizens against
surveillance or other malfeasance not subject to that country’s law, will
have in-country routing by default, since all communications between
two ASes in an ISD stay within the ISD. If a country has laws restricting
the circulation of certain types of data (e.g., stating that medical records
cannot leave the country), then an ISD following this model can be used
to achieve compliance.

» Some national authorities already act as roots of trust for their citizens and
registered corporations, and there are advantages in identity management
if a citizen’s or corporation’s identity on the Internet is vouched for by
the government, which usually has mechanisms for real-world identity
verification.

Unfortunately, a top-down approach also has some severe drawbacks:

* This model would require sovereign entities to manage the networks
in the ISD core. However, most countries are not in the business of
providing Internet service, and would need to develop the competence
for the technical management of the ISD core. In countries with an
incompletely privatized or former incumbent national telecom provider,
the contract for running the ISD core could naturally be given to that
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provider. Countries with robust protection of commercial competition
would need some other mechanism to select the ISD core operators.

* This model negates the advantages of isolation for transnational entities.
An entity with presence in multiple countries, such as a multinational
corporation, would need separate ASes in each ISD, and would need to
build a private network between its own ASes to prevent internal traffic
from crossing the inter-ISD links at the international level.

* It would require a significant transition in both routing topology and
governance structure from the present Internet, which would be hard to
achieve incrementally. With respect to routing, coordinated migrations
from one type of interconnection to another are virtually impossible to
implement at Internet scale, so both routing technologies would need
to coexist for an indefinite period of time. Any failure in international
coordination would lead to widely varying views of the SCION vs. non-
SCION Internet depending on which country’s ISD one is connected
to. With respect to governance, a relatively technically complicated
multilateral international treaty would need to be negotiated to set the
technical framework for international interconnection; this would take
time. Existing governance structures (e.g., ICANN and the RIR system)
would either need to evolve to derive their authority from international
treaties, or they would need to be dismantled and replaced with new
organizations under the new treaty arrangement.

3.5.3 The Isolation Service Provider (IsSP) Model

The models above assume that ISDs must provide core routing services and act
as trust anchors. Regarding routing services, however, this is not necessarily
the case, especially considering the fact that the current Internet topology is
increasingly dominated by peering links as opposed to the textbook model of
tiered transit [2]. We therefore consider a SCION Internet with “stripped-down”
ISDs that provide primarily trust root and infrastructure services for isolation
over networks operated by other entities.

In this model, the links within and between ISD cores primarily handle
control traffic. Almost all up-segments and down-segments will be joined
either by an AS below the core (which itself might be an existing tier-1 ISP),
by a peering link between ASes below the core, or by a peering link across
ISD boundaries (see Figure 3.2). The ISD core then provides low-bandwidth,
last-chance default routing for address pairs without an existing high-bandwidth
peering link between ASes in different ISDs.

There are two reasons to consider this model. First, the amount of trust
placed in ISDs by ASes within them makes the ISD a target for compromise.
The expense associated with an AS leaving an ISD in a model where the
ISD provides that AS’s sole connectivity to the Internet is high, as it may be
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Figure 3.2: Example of the Isolation Service Provider (IsSP) Model.

associated with expensive-to-modify physical infrastructure. The trust the AS
places in the ISD is also great. This provides incentives both for malfeasance on
the part of the ISD — since it cannot realistically be punished for bad behavior
— as well as compromise of the ISD by an external entity. Separating an AS’s
Internet connectivity from its trust root moves the Internet to a model where
most top-tier ASes belong to multiple ISDs, and handle inter-ISD traffic through
“internal” peering links. This multi-membership (illustrated in Figure 3.3) allows
an AS to react to malfeasance, incompetence, or compromise of an ISD by
leaving the ISD without any penalty to its connectivity. This “big red button” is
an important tool in holding the ISD core accountable.
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This model also lowers the barrier to entry for new ISDs. If creating an
ISD requires an investment in communications infrastructure on a par with an
existing tier-1 ISP, growth in ISDs may be limited to existing large organizations.
By separating traffic carriage and trust provision, a new class of ISD, an isolation
service provider (IsSP), emerges. IsSPs could differentiate themselves based on
name service security, careful vetting of first-tier providers, effective quarantine
and isolation of maliciously registered names (see Section 6.5 on Page 116),
governance structures for inter-AS conflict resolution, and so on. Top-tier ISPs
would select a set of IsSPs to offer to their customers, and ASes could select
transit providers based in part on the properties of and services offered by these
IsSPs.

3.5.4 A Global Isolation Domain

Regardless of how ISDs are created, once we have a situation in which every
AS is routinely connected to multiple ISDs, it makes sense to create a default,
global isolation domain with relatively permissive policies. This ISD would be
roughly equivalent to the legacy Internet in a single ISD, but running SCION
protocols. This arrangement would allow other ISDs to operate arbitrarily
restrictive isolating policies with respect to other ISDs, while allowing ASes
that are also connected to the global ISD to maintain default connectivity.
Moreover, the global ISD would offer a view of the name hierarchy that is
similar to the current DNS namespace.

3.6 Nested Isolation Domains

ISDs provide control-plane isolation, path transparency, and the ability to
control paths. It is desirable to achieve these properties at a finer granularity
than that of global ISDs. For example, consider a conglomerate of banks that
desire stronger path control and transparency to ensure that packets will stay
within one bank’s network, or stay within the banking conglomerate’s networks.
Setting up several new ISDs would represent a high operational overhead.

Nested isolation domains (or nested ISDs) provide a lightweight mechanism
for hierarchical isolation domains in SCION. A single AS or multiple ASes can
decide to set up a nested ISD, and they can define how the routing infrastructure
of the enclosing (external) ISD interacts with the nested (internal) ISD. In
particular, the visibility and distribution of external PCBs within the internal
network can range from complete isolation (external PCBs are not sent inside
the internal ISD) to complete transparency (external PCBs are propagated inside
the internal ISD). Another interesting question is whether internal PCBs are
visible externally or not, allowing the nested ISD to achieve some level of
secrecy-for-its-internal-network structure. For the visibility of the internal ISD
structure, we propose three levels of transparency:
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* Transparent: All paths of a transparent internal ISD are announced to
the external ISD. All communication leaving the transparent internal ISD
contains the hop fields of the internal ISD.

* Translucent: A translucent internal ISD is visible, but its internal paths
are not publicly announced outside the internal ISD. The hop fields con-
tained in the packet header refer to the internal ISD, thus some topological
information about the internal ISD is leaked.

* Hidden: A hidden internal ISD is invisible to the outside. All communi-
cation leaving the hidden internal ISD has the internal hop fields removed
(similarly to the source address of devices behind a NAT device). The
structure of a hidden internal ISD, including ASes, paths, devices, and
certificates is thus not exposed externally.

Because the SCION data plane uses info fields to designate each path-segment
transition, each SCION packet header provides ISD-level path transparency.
Therefore, nested ISDs can help enforce interesting policies: a sender can
ensure that a packet cannot leave a corporation, or a firewall at the border of
a corporation can ensure that a packet will not leave a network defined by a
conglomerate of ASes. These properties are in stark contrast to today’s Internet,
where a destination IP address cannot provide strong properties for the scoped
propagation of a packet.

The details about nested ISDs will be specified in a future version of SCION.
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In this chapter, we discuss the authentication infrastructure of SCION, which
enables verification of identities and assertions that data did indeed originate
unchanged from the claimed entity. SCION offers built-in support for various
types of authentication and various uses, and thus provides several infrastruc-
tures to support authentication.

We start this chapter by providing an overview of the SCION authentication
infrastructure. We then present a public-key infrastructure (PKI) for the control
plane, and we describe the details of managing trust root configurations (TRCs),
which includes how TRCs are created, updated, and disseminated. Finally, we
explain how control-plane messages, names, and end entities are authenticated.

Chapter Contents

4.1 Overview . . . . . . . . i i it e e e e e e e e e e 61
4.2 Control-Plane Authentication . . . . . ... ... ........ 68
4.3 Name Authentication . . . . ... ... ... .......... 83
4.4  End-Entity Authentication . . . . . ... ... ... ....... 86

4.1 Overview

As a foundation for authenticating messages, names, and entities, each ISD
core has a set of trust roots. Neighboring ISDs sign each other’s trust roots to
guarantee global verifiability of authentication information. To decrease the
number of trusted entities on long verification chains and thus increase secu-
rity, mutually trusting ISDs can additionally sign each other’s trust roots even
when they are not directly connected. In comparison to today’s authentication
infrastructures such as BGPsec’s RPKI [6] or TLS’s PKI, SCION offers the
following improvements in terms of security and flexibility:
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Efficient updating of trust roots: Even after key loss, disclosure, or
compromise, trust roots can be rapidly updated, without software updates.
Resistance to compromised entities and keys: Compromised or mali-
cious trust roots outside an ISD cannot affect operations that stay within
that ISD. Moreover, SCION’s authentication infrastructure can be con-
figured to withstand any single compromised key for certain critical
operations. In particular, in the case of end-entity certificates, higher lev-
els of security can be achieved and the system can be configured in such
a way that at least three independent trust roots need to be compromised
to forge a certificate.

Decentralized trust model: Authentication relies on local trust roots.
This enables limiting the scope of authorities and preventing global kill
switches, as we describe in more detail in Section 13.8 on Page 325.
Flexible trust policies and trust agility at several levels: Each ISD
can define its own trust policy. ASes need to accept the trust policy
of the ISD(s) they are in, but they can decide which ISDs they want
to join, and they can also participate in multiple ISDs. End entities
can decide which ISD they want to rely upon for resolving names and
verifying the association between names and public keys. They can
also define the set of trust roots they want to use for signing their entity
certificates, irrespective of which ISD they connect to (although if trust
roots of a remote ISD are desired, then the name will need to be selected
from a namespace for which the remote ISD is authoritative). This
flexibility enables fine-grained management of today’s heterogeneous
trust environments.

Highly available authentication infrastructure for the control plane:
Authentication is possible without circular dependencies on the availabil-
ity of routing to verify a certificate’s revocation status, for example.
Scalability: The authentication infrastructure scales to the size of a
global Internet and is adapted to the heterogeneity of today’s Internet
constituents.

Transparency: A verifier always knows the exact set of entities that
need to be trusted for a given authentication operation, and knows that
any other entity cannot influence the operation.

Algorithm agility: SCION offers algorithm agility by providing support
for multiple signatures, so that a new cryptographic algorithm can readily
be used in addition to the current algorithm.

To our knowledge, no previous system has achieved such a strong set of

properties. Although global authentication services without global trust have
been studied for decades, previous work still relied on a globally consistent
name hierarchy [35,97].
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4.1.1 Trust Root Configuration (TRC)

The foundation of the SCION authentication infrastructure is the trust root
configuration (TRC), which expresses the trust roots of each ISD. The TRC
defines the trust roots that are used for all authentication procedures in SCION,
thus all ASes, services, and end hosts need a TRC to use SCION. In short, a
TRC contains

* a version number, a creation timestamp, and an expiration timestamp;

* trust roots for SCION’s control-plane, name-resolution, and end-entity
PKIs;

* parameters specifying (a) the quorum of core ASes (from the local ISD)
required to sign a new TRC, (b) the quorum of CAs required to change
the end-entity PKI’s parameters and trust roots;

* signatures of core ASes to certify the authenticity of the TRC; and

* signatures of remote ISDs’ trust roots (at least one core AS, one CA,
and a name root key). All neighboring ISDs have to cross-sign, so that
each routing path has a corresponding chain of trust that can be followed.
Non-neighboring ISDs can sign TRCs as well (to create shortcuts in trust
paths).

See Section 16.1 for the complete list of items contained in a TRC.

We assume that all entities can initially obtain an authentic TRC, e.g., with
an offline mechanism such as a USB flash drive provided by the ISP, or with an
online mechanism that relies on a trust-on-first-use (TOFU) approach.

Dissemination of TRCs

Information about a TRC update is disseminated via SCION’s beaconing pro-
cess. Each PCB contains the version number of the currently active TRC, and
if the TRC version number of a received PCB is higher than the locally stored
TRC, arequest is sent to the AS that sent the PCB to obtain the new TRC (see
details in Section 7.1). The new TRC is verified on the basis of the current one,
and is accepted if it contains at least the required quorum of correct signatures
by trust roots defined in the current TRC. This simple dissemination mechanism
has two major advantages: it is very efficient (as fresh PCBs rapidly reach all
ASes), and it avoids circular dependencies with regard to the verification of
PCBs and the beaconing process itself (as no server needs to be contacted over
unknown paths in order to fetch the updated TRC). The details of the TRC
dissemination process are described on Page 72.
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Revocation of Trust Roots

The TRC dissemination mechanism also enables rapid revocation of trust roots.
When a trust root is compromised, the other trust roots can remove it from
the TRC and disseminate a PCB with a new version number. The size of the
quorum needed to sign a new TRC must be larger than one to prevent any single
compromised root of trust from creating a new TRC.

TRC Verification

The TRC contains the roots of trust to verify all certificates and statements made
by an ISD. We now briefly describe several verification cases and give a detailed
list of verifications in the remainder of this chapter. To visualize the “flow of
trust” in the sequence of verifications, we draw diagrams as follows. Each circle
represents a cryptographic key that is used to certify another cryptographic
key, for instance by using a digital signature. The key (or set of keys) inside
the double circle is the root of trust that is axiomatically trusted to establish
trust in other keys. An arrow depicts the flow of certification, where the key
corresponding to the first node certifies the key corresponding to the node
pointed to by the arrow. Intuitively, the arrow indicates the “flow of trust” so
that when the first node is trusted, the second node pointed to by the arrow is
also trusted. We use this depiction to convey the intuition; later in the chapter
we use a more formal representation.

LemtTTTT N
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(a) Update (b) Cross-signing

Figure 4.1: TRC verification mechanisms.

Figure 4.1a represents the creation of a new TRC with version 7;1 1, which
is signed using (at least) the quorum of roots of trust defined in the TRC with
version 7;. Figure 4.1b shows the cross-signing of the TRCs of two ISDs.
SCION requires that every pair of connected ISDs also cross-sign each other’s
TRC. This is an important requirement as it guarantees that if a forwarding
path exists, then verifying a destination’s statement is always possible. For
instance, given a sequence of ISDs that need to be traversed from a source to
a destination, then the respective sequence of cross-signed TRCs enables the
source node to verify any statement made by the destination’s ISD.

The TRC is explained in more detail in Section 4.2.1 and the format is
specified in Section 16.1 on Page 369.
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4.1.2 Public-Key Infrastructures in SCION

SCION offers the following three PKIs, which we briefly describe next:

* a control-plane PKI (details in Section 4.2),
¢ a name-resolution PKI (details in Section 4.3),
¢ an end-entity PKI (details in Section 4.4).

Why more than one PKI?

Ideally, SCION would use a single, highly secure public-key infrastruc-
ture. Unfortunately, the infrastructure we describe in Section 4.4 would
introduce a circular dependency if used in the control plane, and would
therefore not provide high availability guarantees.” To obtain intuition
on this point, consider “rebooting” the Internet: when routes are initially
established through routing updates, all information to verify these routing
updates must be available locally or obtainable from the entity that sent
the routing update.” Our end-entity PKI requires end entities, CAs, and
logs to be able to communicate; therefore, circular dependencies would
arise if such a PKI were used to authenticate the control-plane PKI, as the
verification of routing messages would rely on routing and vice versa. For
this reason, the control-plane PKI is based on trust roots that include the
core ASes so that no additional entities need to be contacted to issue AS
certificates or new TRCs.

“Bobba et al. [37] previously described such circular dependencies in the context
of wireless networks. Their solution is to rely on self-certifying identifiers,
which unfortunately are not easily applicable in SCION because of the general
difficulty of updating or revoking self-certifying identifiers.

bThe current RPKI system of BGPsec has a circular dependency since query-
ing the revocation status of a certificate requires the reachability of RPKI
servers [59].

The control-plane PKI is a simple infrastructure that creates short-lived
certificates for the ASes of an ISD. The purpose of these AS certificates is to
enable the validation of signed beacons and path segments and to establish
secret keys with other ASes (e.g., through a Diffie-Hellman key exchange). As
described above, the root public keys are defined in the TRC of the respective
ISD. Each core AS operates one online and one offline key pair. (Potentially,
CAs could also participate under the condition that their servers be accessible
without introducing a circular dependency with beaconing.) The revocation of
root keys is accomplished through a TRC update operation. The revocation
of AS certificates, however, would introduce additional complexity because
each usage of an AS certificate would require a revocation check. We therefore
make use of short-lived certificates for ASes, with a lifetime on the order of a
few days. AS certificates are not directly signed with root keys contained in
TRCs; instead, root keys sign core AS certificates, which, in turn, are used to
authenticatestheregularsASycertificates  that both core and non-core ASes use
for their daily operations.
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Propagation

Propagation

Figure 4.2: Authentication of beacon messages. Core AS A has both a core AS
certificate for issuing AS certificates, and a regular AS certificate
for signing PCBs.

Figure 4.2 depicts the chain of trust used for the verification of beacon
messages that are created by core AS A, forwarded to non-core AS B, and then
forwarded further to non-core AS C. The AS certificates are verified based
on the trust roots in the TRC, then the signatures in the beacon message are
verified based on those AS certificates.

AS certificates are also used for issuing certificates for the hosts inside the
ASes, for instance, by the OPT protocol (see Section 12.3).

The name-resolution PKI also has its trust roots embedded in the TRC.
Root keys are used to sign the root zone files of a DNSSEC-like infrastructure.
To achieve a higher level of security than DNSSEC, a domain’s name resolution
key is also signed with the end-entity certificate, as shown in Figure 4.3. In
standard DNSSEC, one has to trust all entities from the root to the leaf of the
name resolution tree: if any of those keys is under the control of an adversary,
then the final name resolution entry can be fabricated by the adversary. The
DNSSEC authentication still provides an initial authentication, but the strong
end-entity PKI validation will provide a high level of assurance that the domain
key is correct and in turn the final entry is correct.

The end-entity PKI is a high-security infrastructure used in SCION for
end-entity certificates, similarly to the TLS PKI used today for HTTPS. For this
PKI, we assume that the routing and forwarding infrastructures are operational.
Consequently, clients can contact additional services for the verification of a
certificate, for instance for the verification of its revocation status. The main
goal of this PKI is to achieve high robustness against compromised trust roots
and malicious CAs, which we achieve through three approaches: (a) use ISD-
scoped trust roots, such that a CA outside an ISD cannot create a fake certificate
for an entity inside the ISD, (b) record all certificate-related events in a publicly
verifiable append-only log, and (c) require multiple CAs and log servers to
signreachrcertificatess Thedeft:boxsinFigure 4.3 depicts the verification of an
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Figure 4.3: Authentication of an end-entity certificate and a name-resolution
entry.

end-entity certificate, which in this case relies on signatures by two distinct
CAs, and certificate registration by one log server (LS).

Through such a construction our PKI provides the following property for a
client-server communication: if the client has a TRC set as its trust root, an
adversary can spoof the server’s identity only if she is able to compromise a
threshold number of trusted entities (set in the TRC). In the case of a name
resolution pointing to another ISD, the client has to obtain a proof (asserted by
the threshold number of trusted entities) that the server’s domain does not have
a registered policy in the local ISD.

4.1.3 Catastrophe Prevention and Recovery

In case of catastrophic events, such as several private root keys being disclosed
due to a critical vulnerability in a cryptographic library, SCION is equipped
with a recovery procedure. The procedure consists in creating a new TRC with
fresh trustworthy keys (and potentially new algorithms), and re-sending the
TRC to all entities in the ISD and cross-signing entities.

No single malicious entity (e.g., AS, name trust root, CA, log server) can
take down the entire SCION network or impersonate an end entity, since critical
actions require signatures from multiple parties. Even in the event of several
entities forming a coalition to carry out an attack, the effects of that attack
would be limited to one or a few ISDs. Moreover, all actions are publicly
visible, which will deter participants from misbehaving.
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4.2 Control-Plane Authentication

The goal of the control-plane PKI is to enable the verification of control-plane
messages, even if the network is only partially available — and even in the
extreme case where the entire Internet is rebooted. To this end, the control-plane
PKI provides certificates that bind public keys to ASes, and handles all aspects
of the certificate life cycle (creation, revocation, update). The control-plane
PKI is operated by each ISD independently, so that no external ISD can affect
internal operations. The roots of trust are held by core ASes and by selected
CAs that are directly connected to a core AS or deploy their equipment with
their roots of trust within a core AS. The public root keys are embedded in the
TRC. The update and revocation of root keys occurs via signing a new TRC
with a quorum of root keys. The control-plane PKI also provides authentication
for path revocation messages (described in detail in Section 7.3) and SCION
Control Message Protocol (SCMP) messages (overview in Section 4.2.5 and
described in detail in Section 7.6).

4.2.1 Trust Root Configuration (TRC) Life Cycle <

In this section, we describe the life cycle and management of trust root con-
figurations (TRCs), i.e., we illustrate how TRCs are created, updated, and
disseminated, and we show how consistency is enforced.

Creating a TRC

Initially, a TRC is created when an ISD is created and joins the SCION network.
Details on how a new ISD can join the network are provided in Chapter 5. In
short, the process of creating a new TRC is conducted as follows:
1. A new ISD sets trust anchors for the authentication of
a) control-plane messages (the root keys of core ASes),
b) names (the key of the name resolution root zone),
c) end entities (the keys of root CAs and log servers).
2. The ISD specifies all TRC parameters (see Section 16.1 on Page 369).
In particular, the ISD sets the value of the QuorumTRC parameter, which
defines how many of the current core ASes will need to sign the next
TRC. The ISD also sets the quorum required to change end-entity trust
roots (i.e., QuorumCAs). The version number of the first TRC is set to 0.
3. The TRC is first signed by at least a quorum of core ASes in the ISD
(with their online root keys), which is represented by the QuorumTRC
parameter. At this point, the TRC is operational within the local ISD.
4. To be accepted by external entities, the TRC is signed by trust roots of
other ISDs. Specifically, at least one core AS, one root CA, and a name
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trust root from a remote ISD sign the TRC. As chains of trust follow
networking paths every neighbor ISD has to sign the TRC. Non-neighbor
ISDs can sign the TRC as well, to create shortcut trust chains.

5. Similarly, to accept external TRCs, the ISD (i.e., at least one core AS,
one root CA, and the name trust root) signs the TRCs of its neighboring
(and optionally non-neighboring) ISDs after verifying the identities of
the ISDs. This and the previous steps can be combined, and may be part
of a cross-signing ceremony, where administrators physically meet each
other, or may be executed through out-of-band verifications.

The initial TRC should be delivered to all ASes and end hosts (by a trusted
software vendor or a local ISP, for example) via an authentic channel.

Updating a TRC

A TRC update can be conducted for recovery or operational reasons, such as
changes in an ISD core or key updates. Updating a TRC is similar to creating it.
The only difference is that the version number of the new TRC is the version
number of the current TRC plus one, and the new TRC must be signed by at
least a quorum of core ASes as specified in the current TRC.

TRCs are signed with online root keys. However, any change to the section of
the TRC related to core ASes (i.e., the list of AS keys and quorum parameters)
must be approved with offline keys. Such changes can happen in case of key
rollover, loss, or compromise, or in case of addition/removal of a core AS. To
do so, special requests called update tickets must be sent to a quorum of core
ASes who will sign the ticket (if they approve it) with their offline key. Once a
sufficient number of offline keys have signed them, the update ticket(s) must
be attached to the new version of the TRC, which will itself be signed with
online keys. Update tickets enable two properties to be efficiently achieved:
(a) simultaneous updates (e.g., of several root keys, to decrease the number of
TRC updates and thus to keep the overhead low), and (b) asynchronous updates
(obtaining all the required signatures might take some time; in the meantime,
other updates can be applied to the TRC). During the TRC verification pro-
cedure, if any ticket is attached to the TRC, one must check that the ticket
is signed by a sufficient number of legitimate entities and that the update is
compatible with the previous version of the TRC.

Parameters of naming and end-entity PKIs are governed by a naming trust
root and CAs, respectively. To update the parameters, again update tickets are
used. If CAs want to change their section in a TRC (e.g., by adding/removing a
CA or log server), an update ticket is sent to root CAs, and if QuorumCAs many
of them sign it, the ticket is passed to the core ASes that check the quorum and
sign the new TRC (with the proposed change). In the case of a change in the
name resolution section of the TRC, a ticket is created and signed by the name
trust root (as there is a single name trust root key, no quorum is required).
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If the new TRC is signed according to the quorum parameters of the previous
TRC, the new TRC is valid. However, to allow verification of remote messages
and entities, the new TRC has to be cross-signed with neighbor TRCs. Trust
roots (ASes, CAs, and name roots) use their online keys for cross-signing, and
the process of cross-signing updated TRCs can be automated in most cases. In
particular, provided trust anchors are unmodified or added, the new TRC can
be submitted to neighboring ISDs, which verify whether the TRC is signed in
accordance with the value of the current QuorumTRC parameter of the current
TRC. Note that in this case, trust roots of the new TRC do not have to sign
neighbors’ TRCs (as their keys remain unchanged). For instance, when an
ISD A updates its TRC from TRC{ to TRC%, | by adding a new AS, all neighbor
ISDs of A have to sign TRC?H , but A does not need to sign their TRCs as the
previous signatures are still valid (no trust root of A was removed with the TRC
update).

However, TRC updates enable an ISD to remove trust anchors that were
involved in signing neighbor TRC(s). In such a case, the TRC update must be
combined with re-signing all TRCs that were signed by the removed anchor(s).
In both cases, the new TRC has to be signed by trust anchors of neighbor ISDs.
However, to automate that process, ASes, CAs, and name roots can implement
a default policy to sign a remote new TRC if the parameters they are interested
in are unchanged (e.g., for instance a CA can immediately sign the TRC if its
CAs remain unchanged). In extraordinary cases, remote ISDs can refuse the
cross-signing request and negotiate the TRC update process out of band.

After the new TRC is created and cross-signed, it is first loaded onto the core
certificate servers, which propagate the TRC among the beacon servers. New
TRCs are then disseminated via the beaconing process. The TRC update can
remove trust anchors used in routing, name, and end-entity validation; thus it
can create potential availability issues within the ISD. To maintain availability,
an old TRC can be used for a grace period as specified by the GracePeriod
parameter. Certificates issued within this period by a removed trust anchor are
still valid, but should be re-issued (see details on Page 74). Grace periods also
limit the time between TRC updates. Two consecutive TRC updates cannot be
conducted until the previous TRC grace period expires. For example, TRC;;
cannot update TRC;; while TRC; can be used. This rule restricts the number
of TRCs that can simultaneously be used in the validation to two.

Quorum Size for TRC Update

The approach for the TRC update is designed to withstand one malicious core
AS. Although it is possible to extend the approach to tolerate multiple com-
promised core ASes, the system would need more complex operations, such
as consensus algorithms, which would impact availability. In the interest of
keeping our description simple and shott, we defer more complex attacker mod-
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els to subsequent efforts. We emphasize that for the system we describe here,
even in the catastrophic case of a complete compromise of all cryptographic
keys, SCION provides insulation of all other ISDs and enables a new TRC to be
bootstrapped. As long as only a single core AS is compromised, integrity and
consistency of the sequence of TRC updates is not affected. Since we assume
that core ASes are going to be a relatively small number of entities maintaining
active business relationships with each other, misbehavior against each other
is expected to be rare and can be handled through an out-of-band mechanism.
In particular, if a core AS misbehaves, another core AS can collect evidence,
convince other core ASes of the misbehavior, and exclude the malicious AS
from the ISD core. For these reasons, we assume that core ASes extend a
certain level of trust toward each other. Despite being competing entities, core
ASes benefit from cooperation to keep the network operational. Moreover, the
control-plane PKI operations are accountable as all operations are signed, so
that misbehavior will lead to a trail of evidence that can be used in remediation.
It is reasonable to assume that a certain degree of mutual trust can exist in
a small group of entities that are cooperating in an economic environment.
However, we stress that SCION does not require strict consensus as required
in the current Internet. Due to the introduction of isolation domains with local
TRCs, core ASes that disagree on fundamental parts of their TRC (such as root
CAs) can form their own ISD.

We now discuss how to pick the quorum size, i.e., the number of entities
needed to perform certain operations. Let G represent the number of legitimate
“good” core ASes, B the number of malicious “bad” core ASes we want to be
able to tolerate, and U the number of unavailable good core ASes we want to
be able to tolerate. Then we obtain the following formulas for the quorum size:
oS=G-U,Q0S> [%] + B, and [%1 > B. The rationale is as follows. If
not all good ASes participate, the quorum size needs to be smaller than the
total number of good ASes. In the case of simultaneous quorums [148], to
ensure that there is at least one good node that participates in all quorums, we
need to have at least [%] good nodes per quorum. In the worst case, all
bad ASes always participate in each quorum, thus the quorum size is at least
the number of required good ASes plus the number of bad ASes. The third
inequality ensures that, when taking the majority of responders, the bad ASes
cannot outnumber the good ones.

Consequently, to tolerate one malicious AS and one unavailable good AS,
we would need at least six core ASes withG=5,B=1,U =1, and 0S =4,
so even if the bad AS refuses to participate, we can ensure that progress can
be made. With fewer than six core ASes, we cannot tolerate a malicious core
AS and one unavailable good core AS. Assuming that all good core ASes are
available, a satisfactory assignmentis G=3,B=1,U =0, and 0§ = 3.
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Disseminating TRCs

We assume that all entities within an ISD are pre-loaded with a recent TRC.
Moreover, on startup, all servers and end hosts obtain all missing TRCs (from
the TRC they possess to the most recent TRC) of their own ISD from a local
certificate server. However, we impose a restriction on this catching-up opera-
tion: it can only start from a TRC that is at most 1 year old. Then, the TRCs are
validated (i.e., to verify whether subsequent TRCs respect their update policies),
and the most recent TRC is employed for all subsequent operations. There are
two main requirements for the dissemination of TRCs: (a) efficiency, a new
TRC must be rapidly disseminated (to all other parties that need it); and (b)
avoiding circular dependencies, an unverified path should not be used to fetch
a TRC. The first requirement is met by tying TRC dissemination to the bea-
coning, path registration, and path lookup processes. The second requirement
is achieved by applying the following rule: a party that sends a signed object
(beacon, path segment, name resolution entry, or end-entity certificate) must
have the complete trust information (i.e., TRCs and certificates) required to
successfully verify it.

More precisely, TRCs are disseminated via SCION’s beaconing process and
verified based on the current or the previous TRC. While beaconing, each AS
adds to the beacon the version number of the TRC it is currently using. A
beacon server receiving a new beacon checks the version number contained in
the beacon against its locally stored TRC. If the TRC version number within
the received beacon is higher than the locally stored TRC, the beacon server
sends a request to the beacon server that sent the beacon to request the new
TRC. Similarly, the sender can be asked for the missing TRCs of remote ISDs,
as they are required to verify beacons. The sender returns the new TRC, which
is then verified by the receiving beacon server. The conditions under which the
new TRC is accepted depend on the ISD that updated it. If the local ISD has
updated the TRC, then the new TRC is accepted if

1. it contains at least the required quorum number (i.e., QuorumTRC) of
correct signatures of trust roots defined in the current TRC, and

2. the receiving AS’s certificate is valid against the new TRC.

As a beacon server has previous TRCs from its ISD, it is able to verify their
consistency. If the last condition is not met, the AS postpones the TRC accep-
tance until its own certificate is re-issued and valid against the new TRC. In
such a case, the AS continues beaconing using its current TRC and certificate,
meanwhile contacting its core to obtain a new certificate. Note that other ASes
will learn about the new TRC, as the version is in the beacon (at least in the first
AS entry, i.e., the AS entry of the core AS that initiated the beaconing).

In the case of a new TRC from a remote ISD, the update is accepted if

1. it contains at least the required quorum number (i.e., QuorumTRC) of
correct signatures of trust roots defined in the previous TRC; and
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2. there exists a chain of trust from (a) the local TRC to the new TRC, and
(b) from the new TRC to the local TRC.

Note that TRC cross-signing follows the physical network connections, thus
the latter condition is satisfied when all subsequent TRCs in the core beacon
are cross-signed.

After the new TRC is accepted, it is submitted by the beacon server to a local
certificate server. Finally, the TRC is re-distributed internally. To this end the
beacon server replicates the TRC among all beacon servers within its AS, and
similarly the certificate server replicates the TRC among all local certificate
servers.

Path servers discover new TRCs via path-segment registration messages (see
Sections 7.1 and 4.2.3). This occurs when the beacon server registers path
segments (authenticated with the new TRC) with its local path server and a
core path server. The path servers check the version of the TRC with which the
segments were authenticated. If a new TRC is detected, the path servers query
the beacon server for this TRC. After the new TRC is returned, the TRC and
path segments are validated accordingly, and after a successful validation the
TRC and path segments are saved.

Similarly, end hosts learn about new TRCs through the path lookup process
(see Sections 7.2 and 4.2.3). End hosts, at the end of the process, obtain a set of
path segments that can be combined into a forwarding path to the destination.
For a path segment authenticated with an unknown TRC, this TRC is requested
from the local path server, which has returned the path segments. The path
server is obliged to possess all TRCs needed to verify every path in the set.

An example of TRC dissemination is presented below in Section 4.2.4.

TRC Update Frequency

Revocation of root keys happens through TRC updates. The update frequency
of the TRC should be very low, for the following reasons:

* Each update requires a TRC dissemination to all entities that intend to
communicate with a host inside that ISD.

¢ If a host was offline for a while and has an old TRC, it needs to fetch all
intermediate TRCs to verify the current one.

* By making the TRC update a rare operation, we can make minimal use
of the TRC signing keys and shield them from regular operations, which
enhances security.

We thus aim for a TRC update that occurs at most on a weekly basis, ideally on
a monthly or longer frequency. However, TRCs have to be updated before they
expire (expiration timestamps are set by ISDs themselves).
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TRC Lifetime

TRC updates can create inconsistencies in chains of trust. For instance,

¢ abeacon server receives a beacon where ASes use different TRC versions
for authentication,

¢ an end host fetches up-segments and down-segments authenticated using
TRCs with different version numbers,

* an end host possessing a new TRC obtains a name resolution response
authenticated with an old TRC.

To achieve high availability, such inconsistencies have to be handled without
breaking validation. To this end, an ISD can define a grace period (during
which a previous TRC can still be used). This period is defined in the TRC with
the GracePeriod field. Then, TRC; is valid effectively until

TRC;;.CreationTime + TRC;.GracePeriod . 4.1)

4.2.2 AS Keys and Certificates

To achieve a high level of security for the control-plane PKI operation, we
propose that core ASes have online and offline asymmetric key pairs. In this
design, offline keys are used for infrequent safety-critical operations that will
require administrator involvement to cross an air gap, and online keys are used
for frequent automated operations that do not require administrator involvement.

The renewal of AS certificates is an example of a fully automated operation
that occurs every few days and only requires online keys. For the addition
or removal of a core AS, offline keys are required to ensure human operator
involvement and that even a complete compromise of all online keys does not
permit sensitive changes to the TRC. So even for an event such as the Heartbleed
vulnerability [75], which may simultaneously compromise all online keys, the
basic infrastructure (i.e., the control-plane PKI) remains safe and all online keys
can efficiently be updated to fresh keys after the vulnerability has been patched.

The revocation of AS certificates is challenging. As AS certificates are
involved in the availability-critical operation of beacon dissemination and
beacon validation, checking the revocation status of an AS certificate would
result in a deadlock. Consider a revocation service operated by the ISD core,
which keeps a list of revoked AS certificates. When verifying an upstream AS’s
signature contained in a beacon, a downstream AS would need to contact the
revocation service to ensure that the certificate is still valid. In the case of a
network reboot, however, an AS has no paths yet to the core and thus cannot
validate the first beacon message it receives. If one used an unverified path to
reach the revocation service, then the system would not operate safely in the
initial phase. We propose a more elegant approach: short-lived certificates,
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which do not need any revocation if we can tolerate a short period of continued
validity when a certificate is compromised [212].

Table 4.1 gives an overview of the different keys and certificates used in the
control-plane PKI. The TRC contains the offline and online keys of all core
ASes and is signed with a quorum of root keys (online or offline, depending on
the context); as such, it can be considered to be a self-signed root certificate,
except that multiple parties are involved. Online and offline root keys are
included in TRCs while other keys are authenticated via certificates. All ASes
(including the core ASes) use short-lived AS certificates to carry out their
regular operations (such as signing beacons and path segments). Core ASes
hold an additional certificate whose only purpose is to authenticate (other ASes’
and their own) AS certificates.

Name Notation Auth.! Validity> Usage

Offline K; offine TRC 5 years Critical TRC update:

root key - Addition/removal of core ASes
- AS quorum parameter change
- Update of root keys

Online K online TRC 1 year Signing core AS certificates

root key TRC creation, non-critical update
Cross-signing

Core AS K core Cicore 6 months  Signing AS certificates

key

AS key K; C; 3 months  Beacon authentication
Path-segment authentication
DRKey (used within SCMP)

(a) Private Keys
Name Notation Signed by Associated Key Validity
Core AS certificate  C; core Ki online Ki core 1 week
AS certificate C; K core K; 3 days
(b) Certificates

Table 4.1: Summary of keys and certificates used in the control-plane PKI.

The TRC and certificate lifetimes are selected in such a way that frequently
used online keys that are more exposed to potential compromise are rolled more
frequently than infrequently used offline keys. The root key pairs of an AS
must be updated regularly through TRC updates. To ensure that key update is a

I'Location of the corresponding (authenticated) public key.
2Recommended usage period before key update (best practice).
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periodically practiced function (for good security hygiene), all keys are updated
at least every few years. Also, we suggest a validity period of three days for
regular AS certificates and one week for core AS certificates. (Please note that
the key validity period indicates the key lifetime, whereas the certificate validity
period indicates how often the certificate needs to be re-signed.)

When an AS joins an ISD, it obtains from the ISD core:
1. aunique and permanent AS identifier (within the ISD),
2. acertificate for the AS’s public key.

The AS certificate is issued by a core AS, which is obliged to check the identity
of the AS. AS certificates are short-lived, by default valid for 3 days, although
each ISD can set different policies on the certificate lifetime. This design de-
cision is motivated by simplicity and availability requirements, as short-lived
certificates can be validated without any additional information (such as certifi-
cate revocation status information) and no revocation system is required [212].

On the other hand, a consequence of short-lived certificates is a need for
frequent re-issuing of certificates before they expire. This process is automated
in SCION. An AS that needs to re-issue its certificate contacts the core AS that
issued it before, with a re-issuance request. The re-issuance request proves that
the requesting AS still possesses the private key that corresponds to the public
key included in the current certificate. The core AS verifies the request, copies
the fields of the current certificate, sets a new lifetime for the new certificate,
and signs it.

Only the core AS that issued a certificate can re-issue it. With such an
approach, every core AS keeps a one-to-one mapping between ASes and their
current public keys (that were certified by this core AS). The re-issuance
requests are introduced to prove that this mapping is still valid. However, in
the case of key loss or key compromise, an affected AS has to contact the
corresponding core AS to change its mapping as the old public key should no
longer be used. The AS generates a new key pair and contacts the core AS
(out of band). The core AS checks the identity of the AS, and subsequently
issues a new certificate (with the new public key), and changes the mapping
so that old certificates cannot be re-issued anymore. We emphasize that short-
lived certificates are irrevocable during their lifetime; thus if a private key
is compromised, the adversary can use the corresponding certificate until it
expires.

Although core ASes have core AS certificates, these are only used for issuing
other certificates. To separate certificate and key usage, control-plane operations
(such as beacon and path-segment signing) are performed by core ASes with
AS keys and corresponding AS certificates. To this end, a core AS periodically
creates its own AS certificate and signs it with its core AS key. The format of
AS certificates is presented in Section 16.2 on Page 370.
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A TRC update may invalidate an AS certificate, e.g., when a certificate-
issuing core AS has been removed from the TRC. In such a case, the affected
AS can still use its certificate in combination with an old TRC. However, this
is possible only during a grace period as described above, and thereafter, the
AS has to obtain a new certificate from one of the current core ASes. In case
of large-scale compromise, the core AS can revoke its online root key that was
used to sign the core AS key that signed the AS key. Revocation of the online
root key through a TRC update would thus invalidate all the underlying AS
keys.

4.2.3 Control-Plane Authentication <

PCBs and path segments are authenticated with AS certificates. We now
describe these operations in more detail.

Beacon Authentication

The authentication of PCBs is especially important as PCBs are used in building
path segments. The details of PCB creation and the PCB format are described
in Section 7.1.1 on Page 120 and Section 15.3 on Page 356.

The beaconing process is initiated by a core beacon server, which creates
a PCB, appends its AS entry, and signs the PCB with a private key that cor-
responds to an AS certificate that can be validated based on the current TRC.
Certificate and TRC versions are included within the AS entry; thus they are
signed as well. Then, the PCB is sent to a beacon server of a neighboring AS.
The receiving beacon server first checks whether it has the TRC and certificate
with the versions announced in the PCB. If the TRC is new, then the beacon
server updates it. If the certificate version is unknown to the receiving bea-
con server, the sending beacon server is queried, and the correct certificate is
returned. (New certificates are replicated across the AS’s certificate servers.)
At this point, the receiving beacon server has all the information necessary to
verify the PCB. It verifies the certificate based on the TRC, and finally verifies
the PCB’s signature based on the certificate.

The receiving beacon server continues the beaconing process by appending
its own AS entry. As before, the beacon server states versions of the used TRC
and certificate. Finally, the beacon is signed and sent to neighboring ASes. The
next receiving beacon server checks the versions of all TRCs and certificates
involved in the beacon authentication. If any TRC or certificate is missing,
the sender is queried. With such a beaconing design, the relevant TRCs and
certificates are disseminated step by step with the beacon dissemination. The
beacon server continues the validation (and beaconing) after all necessary TRCs
and certificates are provided. Namely, it verifies the signature of each AS entry
individually. The beacon continues to propagate until it reaches a leaf AS*.
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Path-Segment Authentication

Beacon servers turn PCBs into path segments in every registration period (see
details in Section 7.1 on Page 119). Path segments have the same format as
PCBs, except they may be without some optional metadata. Each AS entry
within a path segment is signed, and it contains information about the TRC and
certificate used to protect the entry.

When a beacon server registers path segment(s) with a path server (local
and/or core), the path server(s) can query the beacon server for the TRC(s) or
the certificate(s) (if any are missing). Path servers accept path segments if their
authenticity is verified, i.e., if

1. the required TRC(s) and certificate(s) are provided,

2. if there is a new TRC, it is consistent with the previous one,

3. the certificate(s) are valid with respect to the corresponding TRCs,

4. the path segment’s signatures are valid with respect to the certificates.

Note that through such a registration process, path servers learn new TRCs and
certificates.

The way in which end hosts verify path segments is similar to the way path
servers do so. An end host sends a path request to its local path server, which
then resolves the request recursively (see details in Section 7.2 on Page 132).
For the path segments obtained from the local path server, the end host conducts
the verification. Hence, it first asks for all missing TRCs and certificates used in
the authentication of any path segment. Then, it verifies each path segment as
described above. Similarly, in this way, the end host learns new TRCs, which
finally replace the old ones.

Besides path registration, SCION allows for removal of path segments from
the path servers and end hosts that cache them. The path revocation mechanism
is described in Section 7.3 on Page 138.

4.2.4 Authentication Examples
Intra-1SD Beaconing

An example of intra-ISD beacon authentication is presented in Figure 4.4. Core
ASes update the TRC from TRC;_ to TRC;, after AS F has been removed from
the core. The figure shows how this update is disseminated across the ISD using
a single beacon.

First, core AS D initiates the beaconing process, by creating a fresh PCB with
D’s entry. The entry includes the version number of the new TRC (i.e., i) and
the version number of D’s certificate. The entry is signed with D’s AS private
key, and the corresponding public key is included within D’s certificate Cp,
which in turn can be validated based on TRC;. When AS C receives the PCB,
it learns that there is a new TRC. C asks D for TRC; (and for D’s certificate if
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Figure 4.4: Example of intra-ISD beacon authentication.

it is missing), and then verifies whether the TRC update was correct. Further,
C verifies the signature over the PCB using D’s public key contained in D’s
certificate, and validates this certificate with the new TRC. The PCB is accepted,
and the new TRC is propagated among C’s PCB and certificate servers. Finally,
AS C appends its own entry to the PCB, and signs it. C’s certificate is issued
by D, which is in the new TRC, so C uses i as the TRC version number for its
entry.

Then, the PCB is sent to AS B, which verifies the new TRC (obtained from
(), and the first entry in the same way as C. Then B verifies the next (i.e., C’s)
entry, which is signed with C’s key, and which can be successfully validated
based on the new i-th TRC. Finally, B creates its own entry; however this entry
cannot be marked with TRC;’s version number because B’s certificate is signed
by AS F, which was removed from the core by the TRC update. In such a
case, B is forced to temporarily use TRC;_ (this is possible during a grace
period — see Page 74) for the propagation, and contacts an active core AS to
obtain a new certificate. Although AS B cannot sign objects (e.g., PCBs or
path segments) with the new TRC;, it replicates this TRC among its PCB and
certificate infrastructure.

Finally, AS A receives the PCB, and although the latest AS entry is signed
based on TRC;_1, A learns about the new TRC from the previous entries. AS A
verifies and updates the TRC similarly to how the previous ASes did.

Path servers learn the new TRCs from the path registrations and lookups,

oLl Zyl_i.lbl

stance, if A’s beacon server registers a
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Figure 4.5: Example of core beacon authentication.

path segment that was built upon the new TRC, a receiving path server asks the
beacon server to send this new TRC. However, after path servers learn about
new TRCs, they still accept (during a grace period) registrations signed on the
basis of an old TRC.

Inter-ISD Beaconing

An example of inter-ISD beacon authentication is presented in Figure 4.5,
where a core PCB is disseminated from AS A towards AS D. In our scenario an
intermediate ISD contains two core ASes (i.e., B and C) that have TRCs with
different versions (such a situation can happen for example due to dissemination
delays within an ISD core).

First, a beacon server in AS A initiates beaconing by creating the first AS
entry. The entry is signed with A’s AS private key, and the corresponding public
key is included within A’s AS certificate, which in turn can be validated with
the TRC of ISD 1 (denoted TRC"). A sends the PCB to AS B, which is in
another ISD. AS B uses TRC?_, and verifies the PCB. If TRC' or A’s certificate
is missing, B’s beacon server asks A to provide that. AS B verifies A’s entry
based on TRC', and verifies whether TRC! is cross-signed by TRC7_,, which is
currently used by AS B. Then, B creates and signs a PCB including its entry
and disseminates the PCB to AS C. AS C verifies the PCB, validating A’s and
B’s entries. As B used an old TRC, C checks whether the grace period is not
violated. C also verifies whether TRC! is cross-signed with TRCI-Z, which is
currently used by AS C. Next, C appends its entry and signs the PCB with its
own.AS key, which can be verified based on TRCI-Z. Then, the PCB is forwarded
to ISD 3. AS D receives the PCB and obtains all missing (if any) TRCs and
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Figure 4.6: Example of path-segment authentication.

certificates from the sender (i.e., AS C). As ISD 1 is not a neighbor of ISD 3,
D must verify that there is a chain of trust from TRC? to TRC'. To this end, D
verifies cross-signatures between TRC® and TRC?, TRC® and TRC?_, TRC?,
and TRC'. Additionally, D verifies that the update from TRC? | to TRC? was
consistent.

Path-Segment Authentication

An example scenario of path-segment authentication is presented in Figure 4.6.
The topology consists of three ISDs, where an end host from AS A wishes to
connect to an end host from AS /.

The first step is the beaconing process. In our example, the following path
segments are created:
* an up-segment between source AS A and core AS C,
* a core-segment between core AS C and core AS G, and
* a down-segment between core AS G and destination AS 1.

AS C starts beaconing by sending a new PCB, which eventually is received
by A’s beacon server (an example of this process is presented on Page 78). AS A
receives and verifies the PCB, and converts the PCB into an up-segment. To this
end, the AS creates its own AS-level information, appends it, and finally signs
cate). This path segment is registered
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with a local path server as an up-segment. During the registration, the path
server verifies the up-segment. If a TRC or certificate is missing, the path server
requests it from the beacon server. (Note that new TRCs and certificates are
disseminated during the beaconing process.) After a successful verification, the
path segment from A to C is saved. The beacon server also registers this path
segment (as a down-segment) with a core path server (e.g., in AS C).

Similarly, AS I creates and registers the up- and down-segments between
ASes G and I (the up-segment is registered at the local path server and the down-
segment at the core path server). The TRC(s) and certificate(s) are disseminated
(if needed) accordingly.

The core-segment is created in a slightly different way. A core PCB, dissemi-
nated from G to C, is validated by C’s beacon server. To validate it, the beacon
server needs to have TRCs of ISD 2 and ISD 3. To create a core-segment, C
appends to the PCB its own AS-level information, and then signs the PCB.
Finally, the core-segment is registered with a local path server (i.e., path server
of C), which will request any missing TRC(s) or certificate(s).

After paths are created and registered, end hosts can successfully conduct
path lookups. In our example, an end host from AS A asks its local path server
for a path to AS 1. The path server does not have such a path segment cached,
so a core path server in AS C is contacted. The core path server likewise does
not have the path segment, hence the core of I’s ISD is queried. The core path
server of AS G returns the G-I down-segment (which was registered by I’s
beacon server) to the core path server in C. C’s path server can query I’s path
server for TRCs and certificates used to authenticate the G-I down-segment
(e.g., TRC or I's certificate can be queried if C’s path server does not already
have it). The down-segment is then verified, and returned to A’s path server.
Along with this down-segment, a core-segment (C—G) is added. A’s path server
tries to validate the returned path segments. To this end, the TRCs TRC? and
TRC?, and all certificates involved in path segment authentication are needed.
More specifically, TRC? is required to establish a chain of trust between TRC'
and TRC? (note that TRC? cross-signs these TRCs). At the end of the lookup
process, A’s path server returns the core-segment and down-segment to the end
host, accompanied with the A—C up-segment. Finally, the end host obtains the
path segments (and asks for missing TRCs or certificates), and verifies all paths
and trust chains between TRCs.

4.2.5 SCION Control Message Protocol (SCMP)

Security of a control message protocol is essential for the security of higher-level
protocols. For instance, the Internet Control Message Protocol (ICMP) does not
provide any form of authentication. Consequently, the Internet transport proto-
cols (such as TCP) suffer from attacks caused by maliciously generated ICMP
packets [99]. However, providing security for control protocols is particularly
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challenging, as control packets are often created and processed by routers; thus
the authentication and verification process has to be highly efficient.

Figure 4.7: Verification of an SCMP message authenticated via MAC.

SCION provides a framework for authenticating SCMP packets, and two
distinct authentication schemes are available. The first scheme is symmetric and
based on the DRKey protocol (see Section 12.5 on Page 291). In this scheme,
SCMP packets are protected by their sources and verified by their destinations.
A symmetric key used to authenticate SCMP packets is derived from a secret
symmetric key local to the AS, and is exchanged securely using AS certificates,
as illustrated in Figure 4.7. In the second scheme, SCMP packets are signed in
batches by border routers, and receiving end hosts verify signatures by using
the corresponding AS certificates. More details on the authentication of SCMP
are provided in Section 7.6.3 on Page 156.

4.3 Name Authentication

The goal of the name authentication infrastructure is to authenticate bindings
between SCION addresses and human-readable names. To this end, name
resolution responses have to be authenticated — for which SCION relies on
a DNSSEC-like infrastructure. However, to achieve a higher level of security
than DNSSEC, the validity of name resolution keys is additionally asserted by
end-entity certificates.

4.3.1 Name-Resolution Key Infrastructure

SCION defines its own name resolution protocol, called RAINS, which is
described in Chapter 6. RAINS provides an authentication infrastructure that
is similar to DNSSEC [13], with one main difference that is important for
authentication purposes. Assertions about names in RAINS are explicitly
bound to an assertion context (see Section 6.3.3 on Page 109), which defines
the chain of signatures used to verify the validity of a given assertion. Each ISD
has its own native isolation context, at which signature chains for names looked
up from within that ISD are rooted. This is analogous to the current DNSSEC
treeswithronerootper ISP (instead-of-aisingle global root).
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The root keys for each ISD’s native isolation context are included and dis-
tributed with TRCs, as opposed to software updates in DNSSEC. Through the
TRC cross-signing framework (see Section 4.2.1) clients can resolve names in
other (than native) isolation contexts. RAINS assertions are natively signed
(replacing DNSSEC’s RRSIG resource record type), and delegation occurs via
a digital signature, as opposed to via name-server redirection. For the sake
of simplicity, we leave further details aside for now and refer the reader to
Chapter 6.

Within a native isolation context, the chain of trust is tied to the domain
namespace hierarchy. For instance, a domain ‘ethz.ch.’, which wishes to
sign its name resolution records, first has to obtain a signature for its key from
its parent in the namespace hierarchy, i.e., from the ‘ch.’ domain. Similarly,
ch. has to have its key signed with the root key (i.e., by the root domain . ?).
Figure 6.3 on Page 110 shows such chains for various assertion contexts. The
name resolution root key is contained in the TRC.

Key updates in RAINS are similar to those in DNSSEC, i.e., every change
of a domain’s name resolution key affects the superordinate and subordinate
domains according to the namespace hierarchy of the domain. Namely, the
domain’s parent has to sign the domain’s new key, and then the domain has
to re-sign the keys of each child. RAINS allows multiple keys to be valid for
delegation to a zone at once; operational practices for overlapping validity can
reduce the potential for disruption of verification during a key rollover.

To improve security of the standard DNSSEC trust model, we supplement
RAINS authentication with our highly secure end-entity PKI. More specifically,
domain public keys are additionally asserted by a special end-entity certificate.
We call this special certificate a subject certificate policy (SCP); its details
are presented below in Section 4.4.3. SCPs are certificates issued by multiple
trusted parties (namely, certification authorities — CAs) and used by domains
to govern their public-key certificates and secure connections. There is a unique
active SCP per domain, and SCPs are published as RAINS assertions.! The
domain asserts its own name resolution key by signing this key with its SCP’s
private key and publishing this signature within its name resolution zone. The
public key of this certificate is also published as a RAINS assertion for cross-
verification.

4.3.2 Validation of Name Resolution Entries

As part of a successful name lookup, the obtained assertions are validated as
follows: (a) The signature chain is validated according to the assertion context
for the entry; by default, for globally significant names, this chain is rooted at
the current TRC (i.e., the TRC trusted by the user). (b) Once the assertion is

ISCPslare accompanied by proofs fromthe'end-entity PKI that they are logged and fresh. If a
domain does not have an SCP, the domain publishes an assertion with an absence proof.
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validated, the last step is to verify the domain’s SCP and the additional signature
over the domain’s name resolution key. (c) The client verifies whether the SCP
belongs to the correct domain and whether it is correct (i.e., signed by the
required number of trusted CAs and asserted by a trusted log — more on SCP
validation can be found in Section 4.4.3). (d) The SCP is validated according to
the TRC trusted by the user. (e) Finally, the client verifies whether the domain’s
name resolution key is signed with the SCP’s key. This is the last check which
ensures that name resolution responses are authentic. As the SCP is used in
TLS connections, it can be stored by the client, so the client does not have to
fetch it again over the potential TLS connection with the domain. In the case
when the domain does not have an SCP, the domain asserts in RAINS a proof
that claims that there is no SCP registered for this domain.

Note that, as in the previous cases, inconsistencies may occur while TRCs
are updated. For instance, a client can have a new TRC while some name
resolution entries (signed with an old one) are cached locally. However, the
inconsistencies influence the entry validation only when the new TRC changes
the root name resolution key. In such a case, the validation can be conducted
using an old TRC as long as it is compliant with the specified grace period (see
Equation 4.1 on Page 74).

Example. Consider an address lookup for the following name:
‘simplon.inf.ethz.ch’

Assume the name is iteratively resolved, within the native isolation context,
by a query server without any existing state. The query server performs the
following steps:

1. Retrieve valid public keys for the naming root in the native isolation
context from the TRC, and cache them for the limit of their validity.

2. Issue a query for the delegation key for the name ‘ch.’ in the native
isolation context using an intermediary server storing root assertions
discovered through service anycast (see Section 7.5 on Page 153).

3. Verify the signatures on the resulting assertions against the root public
keys in the TRC, and cache the delegation keys for ‘ch. ’ for the limit
of their validity.

4. Issue a query for the delegation for the name ‘ethz.ch.’ in the native
isolation context.

5. Verify the signatures on the resulting assertions against the stored keys
for the ‘ch.’ zone, and cache the delegation keys for ‘ethz.ch.’ for
the limit of their validity.

6. Issue a query for the delegation for the name ‘inf.ethz.ch.’ in the
native isolation context.
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7. Verify the signatures on the resulting assertions against the stored keys for
the ‘ethz.ch.’ zone, and cache the delegation keys for ‘ inf.ethz.ch.
for the limit of their validity.

8. Issue a query for addresses for ‘simplon.inf.ethz.ch.’ in the native
isolation context.

9. Verify the signatures on the resulting assertions against the stored keys
for ‘inf.ethz.ch.’

10. Additionally verify the signatures on the resulting assertions against the
SCP key for ‘inf.ethz.ch.’, if available.

Note that while the iterative verification of the delegation chain requires each
of the public keys to be available and the signatures thereon verified, all of the
queries can be issued in parallel.

4.3.3 Name Consistency

Each ISD maintains its own root zone for name resolution. This root zone
contains delegations to the authority for each TLD. Each TLD authority then
serves and authenticates assertions about second-level names, and so on. In the
typical case, for a given TLD, each ISD will delegate to the same authority, and
the chain of signatures will be identical beyond the ISD root signature of the
TLD authority. There are two important deviations from the typical case:

¢ Isolated TLD: An ISD may delegate authority for a TLD otherwise not
present in the root zone, creating a TLD that is available only in that
ISD. Care must be taken with isolated TLDs, since they may lead to
conflicts between ISDs, which can only be resolved through nontechnical
processes (see Section 3.5 on Page 51).

¢ Isolated subordinate TLD authority: An ISD may delegate authority
for a TLD to a registry other than the globally recognized registry for
that TLD. This isolated subordinate authority tracks changes to the glob-
ally recognized registry, providing additional vetting of assertions about
second-level domains and potentially declining to include those that are
used for network abuse (e.g., malware domains).

The mechanism for ensuring consistency in a multiple-root environment
using RAINS is described in detail in Section 6.5 on Page 116.

4.4 End-Entity Authentication ¥

The TLS protocol is used globally to secure online communications (HTTP
and SMTP communications, in particular). TLS enables the creation of end-
to-end.encryptedsand-authenticated,channels. To authenticate entities (usually
identified by domain names), TLS relies on certificates, which can be obtained

-
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from hundreds of geographically and administratively distinct CAs. In the tra-
ditional TLS PKI, a single CA can issue a certificate for any domain and bogus
certificates can go unnoticed for long time periods due to a lack of transparency.
Given that the security of the majority of web-based financial and commercial
transactions relies on TLS, one would hope that its security is commensurate
with its widespread acceptance and use. Unfortunately, although CAs wield
significant power in the TLS ecosystem, their trustworthiness has recently been
tarnished by several events. Operational mistakes, social-engineering attacks,
and governmental compulsion have resulted in the issuance of fraudulent certifi-
cates for many high-profile sites [166, 167,225]. In these cases, adversaries can
impersonate domains to clients by performing active man-in-the-middle attacks,
intercepting secure connections and stealing potentially sensitive information.
Software vendors also hold significant power in the TLS ecosystem, since they
manage the list of CA certificates that serve as the roots of trust.

For the SCION end-entity authentication PKI, we leverage a combination of
ARPKI [23,24] and PoliCert [235], which address the above issues and provide
provable security guarantees. ARPKI provides the basis for a transparent
and resilient infrastructure, while PoliCert allows domains to specify policies
governing the use of their certificates to achieve additional security objectives
and address the shortcomings of previous systems. The system we present is
deployable (in an incremental manner) both inside and outside of SCION. In
the inside case, however, SCION allows roots of trust to be defined at the ISD
level, through TRCs, instead of being distributed independently by different
software vendors. SCION allows the scope of these trust roots to be limited to
ISDs, unlike current systems that rely on global trust.

4.4.1 Background

For the issuance of illegitimate certificates to be detected, the operations of
CAs need to be transparent. Google’s Certificate Transparency (CT) frame-
work [149] proposed the use of append-only public logs to provide CA ac-
countability. The goal is to make all issued certificates visible in order to alert
domain owners and clients of any possible misbehavior. CT creates a system of
public logs, which maintain a database of observed certificates issued by trusted
CAs. The log can then provide evidence that it contains a given certificate, and
the proof can be checked by clients during the TLS handshake. Additionally,
the log is publicly auditable so that any party can fetch proofs of presence or
consistency. However, CT has several drawbacks. Specifically, CT’s main goal
is to detect suspicious behavior, and thus it does not actively protect clients
from ongoing attacks if an adversary successfully registers a bogus certificate
at a public log [167]. Nevertheless, public logs similar to those used by CT can
be employed to build systems such as ARPKI and PoliCert to provide strong
security guarantees.
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Figure 4.8: Example of appending entries in chronological order to a Merkle
hash tree. The tree on the left-hand side represents the initial state
of the log, and the tree on the right-hand side represents the state of
the log after addition of certificates Cs—Cs.

Merkle hash trees* are generally used to implement public logs. Typically,
hash trees are binary trees in which leaves contain certificate-related data, and
non-leaf nodes contain the hashes of their two child nodes [174]. This structure
can be leveraged to efficiently prove that a leaf is part of the tree. Only one node
per level is needed in a proof of presence; hence, the proof size is proportional
to the tree height, which is O(log,(n)) for n leaves. If leaf nodes are ordered
(e.g., lexicographically), the tree can additionally provide proofs of absence.
If nodes are appended chronologically, then the tree can also provide proofs
of consistency showing that the tree is indeed maintained in an append-only
manner. Proofs are based on tree roots, which are lightweight cryptographic
representations of the log at a certain point in time.

Example. Two Merkle hash trees are shown in Figure 4.8. It is possible, for
example, to prove to someone who holds /1734 and 12345678 that the tree on the
left-hand side was extended (without removing any existing entry) to obtain the
tree on the right-hand side, by providing %s¢7s.

4.4.2 Problem Definition

In this setting, the adversary’s goal is to obtain a valid certificate and the
corresponding private key for a domain that is not owned by the adversary (e.g.,
in order to obtain secret information through a man-in-the-middle attack). To
this end, the adversary can either directly compromise the server in question
to obtain its private key (in which case the PKI does not play any role in the
attack; it is the server administrator’s responsibility to protect the private key)
or the adversary can try to produce a new valid certificate for that domain by
compromising a number of trusted entities. However, for a PKI to satisfy any
nontrivialysecurityspropertypwersassumesthat the adversary cannot compromise
all entities. We also assume that the network is not trusted and, therefore, that
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the adversary can eavesdrop, modify, and insert messages at will. The main
properties we seek are the following:

* Compromise Resilience: Unless more than a threshold number of
trusted entities are compromised, it should be impossible for an adversary
to impersonate a domain by forging a certificate or policy that would be
accepted by clients.

* Balanced Control: All parties should be able to contribute towards de-
termining whether or not a domain’s certificate is valid, whether through
signing information or specifying parameters for connection establish-
ment.

4.4.3 ARPKI and PoliCert

Although ARPKI and PoliCert were initially developed as independent systems,
they are compatible and are combined into the authentication infrastructure that
we present in this section. We give a high-level description of these two systems
and refer the reader to the academic papers for more details [23,24,235]. We
start by listing the relevant entities in our infrastructure:

* Clients (usually browsers) can initiate TLS connections with servers
in any domain. Depending on the authentication data provided by the
server, a client can either accept the connection or display a warning/error
message.

* Domains are identified by names unique within a given isolation context,
and their servers respond to TLS requests from the clients. Domains
authenticate themselves to their clients by presenting their certificate(s)
and by using the corresponding private key(s).

¢ Certification authorities (CAs) are trusted entities responsible for issu-
ing certificates for public keys that are associated with a domain. CAs
must verify that the certificate requester is the legitimate owner of the
domain in question. Clients must have access to a list of trusted root
CAs, while intermediate CAs are certified by other CAs. CAs are also
responsible for monitoring logs to detect their misbehavior.

* Log servers maintain a tree-based record of valid certificates and policies.
Logs are able to prove that they behave in a consistent manner.

Subject certificate policies (SCPs) are central elements of the SCION end-
entity PKI. An SCP contains parameters regarding the usage and validation of
a domain’s certificate, such as the list of CAs authorized to sign the domain’s
end-entity certificate. Each SCP has an associated key pair, and at a given point
in time each domain can have only a single valid SCP. The policy private key is
used to (a) sign the policy binding in a domain’s certificate and (b) authorize
certificate-revocations-and-policy-updates. Because the parameters in an SCP
are bound to a domain’s identity and policy key pair, we encode an SCP as a
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series of standard X.509 certificates (signed by distinct CAs), where each X.509
certificate authenticates the policy public key and lists the policy’s parameters
in an X.509 extension.

Let n be a security parameter that denotes the minimum number of parties
(i.e., CAs and logs) that must be actively involved in asserting that an SCP has
been registered. Then, an SCP must be confirmed and signed by at least n — 1
CAs, and it must be registered by at least one log server to be considered valid.
This n parameter is specific to each ISD and is defined in the TRC with the
ThresholdEEPKI field.

Since domains are expected to only infrequently change their policy, SCPs
are assumed to be stable (barring catastrophic events such as a weakness in a
widely used encryption scheme). Therefore, we require that SCPs be valid for
an extended period (of the order of months). Besides the end-entity PKI, SCPs
are also used to certify RAINS keys (i.e., a policy key can sign the domain’s
RAINS key).

To provide some resilience against CA compromise, we use multi-signature
certificates (MSCs), which allow multiple CA signatures to authenticate a
single public key and require only a certain threshold of the signatures to be
valid. Similarly to SCPs, an MSC is encoded as a series of standard X.509
certificates (signed by distinct CAs) authenticating domain D’s public key.
These standard certificates are followed by a special certificate that we refer
to as a policy binding certificate. The policy binding certificate is signed with
an SCP’s private key controlled by domain D itself, and contains the current
version number of D’s SCP and an X.509 extension that lists the hashes of
all certificates within the MSC. This allows the domain owner to change the
certificates within an MSC. Because the policy binding can be generated by
D independently of any CA, these changes can be made quickly. In order for
an MSC to be considered valid, a threshold number of its certificates (defined
in the policy) must be valid. An MSC with one certificate is equivalent to a
regular certificate, but contains an additional policy binding certificate.

Log servers are highly available entities that monitor issued certificates, re-
vocations, and policies. Each log maintains a certificate tree, which tracks
certificates (MSCs); a policy tree, which tracks policies (SCPs); and a consis-
tency tree, used to prove the append-only property of the log. The consistency
tree contains all MSC and SCP registrations, updates, and revocations in chrono-
logical order. Additionally, upon each update the log appends the concatenation
of the root hashes of the current certificate and policy trees to the consistency
tree. Merkle hash trees allow the log server to produce efficient proofs that a
leaf is present in or absent from the tree. These proofs can demonstrate that a
certificate is logged, not revoked, and compliant with all applicable SCPs. To
avoid frequent updates to the trees and thus to the proofs, objects are batch-
added periodically (e.g., every hour). The update frequencies of log servers
are publiciinformation; allowing clients to query them after each update or as
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needed. When an object is accepted for insertion into a tree, the log server
schedules it and returns a signed receipt with the time at which the object is
guaranteed to be present in the log’s database. Log servers are required to
produce a proof for a specific entry (certificate or policy) on request, which
certifies the current validity of that entry. A log server is also required to provide
a proof of consistency by showing that its database has been correctly extended
from a previous version.
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Figure 4.9: Overview of the SCP registration process.
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SCP registration. At a high level, the SCP registration process (see also
Figure 4.9) works as follows:

1. The domain creates a registration request along with a list of CAs that
will confirm the registration. The request is sent to the first CA in the list.

2. The request is passed to the log, which performs verifications, synchro-
nizes with other logs and CAs, and returns a receipt.

3. The receipt is then sent to the second CA, which checks that the registra-
tion was carried out correctly and passes it to the next CA.

4. The first CA receives the receipt and performs similar verifications.
5. The domain receives the log receipt confirmed by n — 1 trusted entities.

Thereafter, the domain can create a key pair with which it will authenticate
itself to clients. Then, the domain obtains standard X.509 certificates from
authorized CAs (specified in the policy) and combines them, along with a
policy binding (signed with its policy private key), into an MSC. The MSC is
registered and confirmed by multiple entities, similarly to the SCP registration.
A TLS connection can then be established.

After a successful SCP or MSC registration, the log returns a registration
receipt promising that the certificate or policy will be added to its database
within a certain amount of time. This registration receipt can be used as a
short-term confirmation that an SCP or MSC is in the log, but proofs are more
commonlysusedsforthisspurposesTosuccessfully establish a connection to the
domain, the client needs proofs that the policy is registered, as well as proofs
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that the MSC is registered and not revoked. While anyone can request such
proofs from a log, they should be periodically retrieved by the domain and
stapled to the MSC and SCP. To request a proof, the domain sends a request
containing a hash of its MSC. The log uses this hash to locate the appropriate
leaf node in its certificate tree and generates a proof of presence or absence.
The log also produces a proof of presence for the domain’s policy, as well as a
proof that the policy and certificate trees’ root hashes are the most recent ones.
Additionally, proofs are confirmed by n — 1 entities. The domain can then pass
these proofs and hashes on to the client. There is also a possibility that the log
does not have a proof for an SCP or MSC. It may be the case that the MSC,
SCP, or both do not have a corresponding log proof because the log has not yet
updated its database to reflect a registration. In this case, a registration receipt
from the log suffices as a proof of presence so that domains that newly register
a certificate and policy can begin serving customers as soon as possible.

4.4.4 Security Discussion

We now conduct an informal security discussion of our end-entity authentication
infrastructure. We assume that a domain D has correctly registered its policy
and certificate at the logs. We consider an adversary who is able to capture
trusted entities of the system and whose goal is to impersonate the domain.

First, we observe that an adversary without the private key corresponding to
a valid SCP for D cannot create a valid MSC for D and thus cannot impersonate
it. Constructing an MSC requires a policy binding. Because the policy binding
must be signed with D’s policy private key, an adversary without that key cannot
create any valid MSC. An adversary can either try to obtain that key directly
from the domain or produce a fake SCP, but this second option would require
compromising n entities. Even if we assume that the adversary has access
to the original policy’s private key, then the adversary cannot impersonate D
without compromising at least a threshold number of D’s trusted CAs. This
is due to the MSC validation process, which requires a valid MSC to contain
at least a number (specified in the policy) of valid certificates. An adversary
who has compromised the required number of trusted CAs and D’s policy
private key can impersonate D by creating a malicious MSC and serving it
to clients. However, to mount this man-in-the-middle attack the adversary
must receive confirmations (a registration receipt or log proof) from the log.
This requires registering the malicious MSC, which would make the fraudulent
certificate publicly visible. The adversary could also attempt to update the
SCP, but this would require compromising the number of CAs specified in the
policy. MSCs by design remove single points of failure, which mitigates other
threats such as too-big-to-be-revoked CAs [234]. If we assume that logs are not
malicious, then the above attacks can be detected since the adversary’s actions
will become publicly visible. If we consider that logs might be misbehaving,
g0ssip protocols [52] can be used as a last line of defense.
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In this chapter, we describe how ISDs are discovered and how they coordinate
with each other, especially when a new ISD is created. The goal is for each ISD
to have a list of all other ISDs — specifically, an identifier and a description for
each ISD along with the roots of trust that enable authentication. An authority
could create such a list and distribute it, but this would conflict with SCION’s
goal that each ISD can operate independently and communicate with other ISDs
without any globally trusted entity. A global authority could also introduce a kill
switch to take down parts of the Internet, so instead we present a decentralized
approach.

In short, when an ISD joins the SCION network, its neighbors must announce
it through dedicated beacon extensions. This prevents situations in which two
new ISDs are created with the same identifier, as other ISDs have time to detect
whether an ISD is being created under a misleading identity (intentionally
or not). As ISD coordination is realized through beaconing, operations are
transparent and accountable. To cover the possibility that conflicts might happen
despite those preventive measures (due to negligence or malicious intent), we
propose mechanisms to detect and resolve such conflicts. We also describe
how ISDs are globally identified and how ISD descriptions (i.e., short textual
representations of the entity running the ISD) can be specified and updated.
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5.1 Motivation and Objectives

As we describe in other chapters, core beacons (Section 7.1.3 on Page 127)
and TRCs (Section 4.2.1 on Page 68) can be used to construct authenticated
core-segments across ISDs that already know of each other. However, we have
not described how new ISDs are announced or how conflicts are prevented
when two ISDs claim the same identity but have different TRCs. New ISDs
will indeed be created over time, and they should not be required to exchange
keys — out of band — with all other ISDs before joining the network. Also,
our assumptions regarding the honesty and cooperation of participants differ
for the intra-ISD and inter-ISD case. Inside an ISD, we can expect ASes to
collaborate, as they share a geographical, political, or organizational framework.
At a larger scale, however, we cannot expect all ISDs to fully trust anyone, so
we want to avoid a situation in which any single entity is responsible for the
management of the whole SCION network. For these reasons, we have devised
a process (described in this chapter) to announce, discover, and identify new
ISDs without any central authority. But first, we discuss existing solutions and
show why they are insufficient for our purposes.

Public-key certificates could be attributed to each ISD, but this would require
that a trusted authority takes part in the initial issuance process, and such an
authority could impersonate the entities for which it is responsible. Although an
impersonation attack would eventually become visible, it cannot be prevented.
Moreover, an attack can not only be caused by an ill-intentioned authority,
but can also be the result of a key compromise or an honest administrative
mistake. Self-certifying identifiers [7, 180] initially appear to be a promising
direction, but on closer consideration, the difficulty of revoking or updating
keys (to recover from key loss or compromise, for example) renders their use
impractical in this context.

Blockchains are often presented as a way to achieve global consensus and
implement a fully decentralized database. As decentralization and coordination
on a global scale are the main properties we seek here, it may seem that we
could build upon such a technology to achieve our goals in the context of ISD
coordination, but there would be drawbacks. A blockchain is computationally
expensive to maintain, peers need to be able to communicate with each other
(which we cannot assume here, since we are defining the architecture upon
which communication will be based), and consensus, when achieved through a
proof-of-work system, also raises issues: with the majority of computing power,
one can effectively manipulate the blockchain [200].

An absolute consensus is not needed to attribute identifiers to all ISDs.
Consensus might not even be possible or desirable on a global scale. Instead,
the system we describe tolerates ISDs having different views of the world,
but encourages them to find an agreement and deters misbehavior through
transparent operation: Besides; therinformation upon which ISDs must agree
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is minimal: only the binding between a globally unique identifier and an ISD
(represented by a set of keys) must be determined, so we expect inconsistencies
to be extremely rare.

Given that we employ a decentralized approach, different ISDs may use
different methods, and this allows migration to new approaches over time.
At a high level, the approach we propose for ISD coordination consists of
three phases. In the first phase, a new ISD is announced in advance by all
its future neighbors, which allows detection of colliding identifiers and gives
administrators time to contact each other to resolve potential conflicts. In the
second phase, the neighbors of the new ISD propagate their final announcement.
During the last phase, if conflicts still exist, then each ISD can set some rules
and pick which entity is to be trusted for building its own list of ISDs.

5.1.1 Potential Attacks and Undesirable Behavior

To provide insight into why ISD coordination is needed, we consider some
unwanted situations. The difference between an attack and suspicious but
benign behavior is often small; the scenarios we present can be the result of
an error or malice, but we do not need to know the exact cause of abnormal
behavior to prevent it from disrupting normal operations.

Identifier Squatting

The first type of undesirable misbehavior happens when an ISD is created with
the same identifier as an already existing ISD. This situation is illustrated in
Figure 5.1a and can occur in different cases:

* A newcomer ISD 1’ is intentionally trying to replace ISD 1 by advertising
the same identifier with a different path and different keys. To do so,
it needs the cooperation of ISD 4, which is already connected to the
network.

* ISD 4 is pretending to be connected to ISD 1’ (although ISD 1’ might
not even exist) and is making an announcement in order to replace the
existing ISD 1.

e ISD 2 and ISD 4 are both announcing — almost simultaneously — the
creation of new ISDs (ISD 1 and ISD 1/, respectively) with the same
identifier, which results in a conflict.

The first two attacks are equivalent — from the victim’s (i.e., ISD 1’s)
standpoint — and can be prevented by attributing an identifier to the first ISD
who claims it. The result of doing so is that an attack cannot be successfully
carried out as long as private keys are not compromised, since updating a
TRC requires valid signatures. The third case, however, is more plausible and
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will be addressed in the remainder of this chapter, in particular, through early
announcements.

Spurious ISDs

The second type of misbehavior concerns the situation in which many ISDs
are created with new identifiers and arbitrary descriptions in a short period,
as illustrated in Figure 5.1b. In that particular example, ISD 1’s announce-
ments might be legitimate, but the ISDs could also be fake and created with
the intention of disturbing communication in the rest of the network. This
situation is problematic, mainly for the following reason: an exhaustion or
overcrowding of the identifier space is possible (since identifiers are positive
integers). This could create conflicts and prevent someone who desires to create
a new legitimate ISD from doing so.

To address this problem, the number of ISDs that any existing ISD can
announce during a defined period should be limited. This makes an exhaustion
attack infeasible if the creation period is chosen such that it takes a few days to
create a single new ISD, and if the identifiers are represented with a sufficiently
large number of bits. This safeguard slows down the ISD creation process, but
this is desirable, since ISDs are the largest and most important structural unit in
SCION. As such, ISDs are expected to take time to build and stabilize.

ISD 1 ISD 1’ ISD 3

T ISD 2 ISD 4

ISD 2 ISD 4

S \ / I1SD 1 ISD n
ISD 3 /

(a) Identifier squatting (b) Spurious ISDs

Figure 5.1: Examples of misbehavior in the context of ISD coordination.

Inappropriate Descriptions

The ISD descriptions could be misleading. Specifically, a new ISD could
be created with an available identifier but a deceptive description in order
to impersonate an existing ISD (e.g., a new ISD could be announced with
the description “USA” when an ISD with the description “United States of
America -already-exists)=Preventing-inappropriate descriptions is more difficult
than preventing colliding identifiers, because uniqueness is not sufficient: two
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descriptions might be highly similar without being identical. Therefore, the
intervention of administrators is required to resolve such cases.

5.2 Announcing and Discovering New ISDs

In this section, we describe how new ISDs are identified, announced, and
discovered.

5.2.1 Identifiers and Descriptions

ISDs are globally identified by unique positive integers. These identifiers are
specified in the TRC and must be chosen with the help of neighboring ISDs
that are already part of the network and know the list of existing identifiers.
It is recommended that identifiers be picked in order, although this is not
strictly enforced (as it would make the resolution of identifier collisions more
complicated).

In addition to identifiers, all TRCs must also contain a human-readable
description field that briefly describes the entity running the ISD (e.g., a country
or a company name). Descriptions should not be misleading, and it is the
neighboring ISDs’ duty to verify that this condition holds before propagating
an announcement. Descriptions can be changed through TRC updates (if
neighboring ISDs approve the description change); identifiers, however, cannot
be updated.

5.2.2 Announcements

A new ISD must be advertised to the whole network through a dedicated core
beacon extension called an announcement that contains the TRC (version 0) of
the new ISD, which contains an identifier and a description. Announcements
containing invalid TRCs (e.g., with an insufficient number of signatures) must
be ignored. Newcomer ISDs should collaborate with their neighbors to create
their first TRC. Once the new TRC is created, it must be sent to all neighboring
ISDs, so they can start generating announcements.

The advantage of this approach is that beacons (and thus beacon extensions)
are signed by ASes from each ISD along the propagation path. Signatures
constitute evidence that these ISDs have seen or generated the content of the
beacon extension.
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Early Announcement

During the early announcement phase, the announced TRC is valid but must
not be used until a 7-day period has elapsed, and the TRC must come with a
quarantine flag set to true.

Early announcements are produced by all the neighboring ISDs of the new
ISD for at least one week and, as beacon extensions, are propagated through
all core ASes of all ISDs. The recipients of an announcement set a timer to
7 days when the announcement is first received and they do not allow further
steps (i.e., the final announcement) to take place until this timer expires. This
gives some time to administrators to notice if another ISD is being announced
under an existing identifier. As ISD creation is expected to be a fairly rare
event, and as core PCBs propagate rapidly, unintentional identifier collisions
are unlikely to occur. Nevertheless, if a collision happens, administrators can
contact each other, agree to use different identifiers, and thus resolve the issue.
By “different” here we mean that the new identifiers must be both different
from the conflicting identifier(s) previously announced and different from each
other.

When an announcement is modified in any way and propagated again, a new
timer must be set by all receivers. ISDs are limited to making at the most five
concurrent early announcements. This means that other ISDs only maintain a
maximum of five running timers per source ISD. Also, an early announcement
is only valid for 14 days. After that period, if the second phase has not started,
an early announcement must be transmitted again to proceed.

Inappropriate descriptions should be detected by ISD administrators in this
7-day period, and the corresponding early announcements should be blacklisted
to avoid the propagation of unwanted final announcements in the next phase.

During the announcement period, the new ISD must start building its own
list of TRC:s. For this to be possible, neighboring ISDs must provide an initial
list and/or start forwarding core PCBs to the new ISD.

Final Announcement

A final announcement (still in the form of a beacon extension) must be gen-
erated by all neighbors of the new ISD and contain its initial TRC — with
the quarantine flag set to false — when the 7-day period has ended. Because
each ISD has its own timer, and because announcements take some time to
propagate, final announcements should be generated and sent repeatedly 7 days
after the first early announcement was sent. This constitutes the second phase
of ISD creation. When a final announcement is received by a core AS, the
corresponding TRC is added to the local list and propagated further, if the
following conditions are met:

1. an early announcement containing the same TRC was received before,
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that early announcement is not blacklisted,
the corresponding 7-day timer has expired,
the identifier specified in the TRC is currently not in use,

A

no other early announcement (excluding blacklisted ones) containing a
TRC with the same identifier was received in the 7-day period.

If conditions 14 are not respected, then the final announcement is ignored.
If condition 5 alone is not met, then a conflict resolution procedure must be
initiated. When the final announcement has been propagated, the new ISD can
be considered part of the network and start communicating with other ISDs.

The details of how early and final announcements must be validated and
propagated by core ASes are specified in Algorithm 1. The isValid() function
returns true if conditions 14 are respected by the final announcement, and
hasConflicts() returns true if condition 5 is not respected.

Algorithm 1 Validating and Propagating ISD Announcements

1: data: ExistingISDs, EarlyAnnouncements, Timers, Blacklist

2: parameters: MinDays = 7, MaxDays = 14, MaxAnnouncements = 5
3: upon reception of announcement a do

4: if a.quarantine = true then // early announcement

5 if not EarlyAnnouncements.contains(a) then
6: for i — 1 to MaxAnnouncements do
7: timer = Timers.get(a.sourcelSD, §);
8 if timer.isNotRunning() then
9: timer.setTo(MinDays);

10: Early Announcements.add(a, timer, MaxDays);

11: break;

12: end if

13: end for

14: end if

15: Propagate(a);

16: else // final announcement

17: if a.isValid() then

18: while a.hasConflicts() do

19: ResolveConflicts();

20: end while

21: if not Blacklist.contains(a) then

22: ExistingISDs.add(a)

23: Propagate(a);

24: end if

25: end if

26: end if
27:end.reception
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5.3 Local Resolution of Conflicts

After the first two phases (i.e., early and final announcements), which take at
least one week, any remaining conflict is either intentional or the indication
that ISDs failed to coordinate to avoid picking the same identifiers. We now
describe how each ISD can resolve conflicts locally and we discuss measures
that can be taken if misbehavior is observed.

In this context, we define a conflict as follows: a number n of ISDs has cor-
rectly generated announcements for a new ISD with identifier i during a given
period, while a number m of other ISDs has correctly announced a different
ISD (i.e., with a different TRC) with the same identifier i during an overlap-
ping period, and at least one of the two corresponding final announcements is
received.! There are several possibilities to resolve such a conflict:

* The decision can be based on the opinion of the majority (i.e., based on
max (n,m)), but this might not be possible (i.e., if n = m).

* Certain ISDs might be more trusted than others: by looking at which
group (n or m) the most trusted ISD is in, a decision can be made.

* The conflict can be manually resolved on a case-by-case basis.

In case of conflict, it is up to each ISD to make a decision based on the above
parameters. Conflicts may also concern similar descriptions, but such situations
necessarily require human judgment in order to be detected and resolved. A
conflict resolution procedure must result in incriminated early announcement(s)
being blacklisted.

5.3.1 Conflict Resolution Policy

A policy can be specified to automatically resolve conflicts involving identical
identifiers or descriptions. The policy must indicate whether the resolution
should follow the majority of ISDs (if applicable), or instead use a complete
list of ISDs ordered in terms of trust to make a decision. By default, new ISDs
are placed at the end of the list and thus older ISDs are more trusted. However,
administrators can arrange the list as they desire. Also, new ISDs are free
to re-order the list they initially obtained. Alternatively, more elaborate trust
metrics could be computed over time based on observed events.

IThere might'be'even more conflicting'groups, but we consider only two groups here for the
sake of simplicity.
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While the path resolution process is necessary to turn a destination address into
a set of paths, this is not sufficient for establishing communication between
SCION-connected endpoints: we also need a way to turn an Internet name
into a SCION address. As name resolution and path establishment are separate
processes, with different timescales and triggered by separate events, we design
a dedicated infrastructure that is optimized for each purpose.

We begin with an analysis of what a name resolution service is good for. At
its core a naming service must provide a few basic functions, but in essence
associate a human-understandable name with machine-understandable infor-
mation. Although the Internet’s Domain Name System (DNS) has been used
and abused as a general-purpose distributed database, a useful Internet naming
service need only provide information that is necessary to establish and main-
tain communication with an Internet-connected entity: addresses, namespace
delegations, service information, certificates, and auxiliary information. There
are two entities in this ideal naming service: (a) The guerier is a client that
wants to establish communication across the Internet with a named entity. That
client uses the naming service to retrieve the necessary information. (b) The
authority is an entity with the right to make assertions about names within parts
of the Internet namespace. Before looking at the specific interplay between
queriers and authorities, we start by discussing various possible resolution

types.
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6 Name Resolution

Background

6.1.1 Resolution Types

The assertions for name resolution are essentially mappings of various forms:

Name-to-address: given a name, return associated addresses.
Name-to-name: given a name, return equivalent names.

Name-to-service: given a name representing a service, return a name
and transport-layer ports for connecting to the service.

Name-to-certificate: given a name representing a host or service, return
an end-entity certificate representing the named entity, for authentication
of a subsequent connection attempt with the named entity.

Name-to-delegation: given a name representing a zone within the name-
space, return the public key used to verify assertions in the zone.

Name-to-auxiliary-information: given a name representing an organi-
zation-level zone within the namespace, return information about the
zone and the organization behind it, analogous to the WHOIS service;
as well as any restrictions on names in the zone (e.g., for confusability
reduction).

Address-to-name: given an address, return associated names, analo-
gously to reverse DNS.

6.1.2 Properties of an Ideal Naming Service

We consider a set of properties of an ideal Internet naming service as background
to selecting a design for SCION name resolution. A more in-depth discussion
of these properties, enumerated below, is given in an IETF draft [239]. An ideal
naming service must

provide for names which are meaningful to human users;

guarantee that different names are distinguishable by its users;

allow for authority over names to be federated;

allow a unitary authority for any given name to be transparently deter-
mined;

operate without requiring trust in the operators of the name server infras-
tructure;

provide for revocation of authority over a given name;

allow assertions about names, and the nonexistence of a mapping for a
name, to be unambiguously authenticated;

provide for consistency, and predictability in the presence of changes to
assertions about names, but
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* allow for explicit inconsistency when necessary, and global transparency
of this inconsistency;

e perform acceptably, in terms of availability, latency, and bandwidth
efficiency;

« allow clients to specify tradeoffs between privacy and performance.

Since an Internet naming service is designed to provide information about
Internet-connected hosts and services for the purposes of establishing a connec-
tion, note that assertion confidentiality (usually referred to in DNS literature
in terms of zone enumeration) is a non-goal of our ideal naming service. If
assertion confidentiality is required, an alternative service can be established
that provides access control to the information that should remain secret.

6.1.3 Notation

Throughout the chapter, we make use of the terms, abbreviations, and resource
record (RR) types defined in Table 6.1.

Term Definition

Assertion Mapping between a name and a property of that name

Shard Set of assertions for some authority and context

Zone Set of all shards and assertions for some authority and context
NCO Naming Consistency Observer (see Page 116)

RR Resource Record (fundamental data unit, see table below)
TLD Top-Level Domain (such as .ch or . com)

ZK Zone Key (key to sign assertions for the respective zone)
RZK Root Zone Key (special zone key used for the root zone)

(a) Terms and Abbreviations

RR Type Content

A 32-bit IPv4 address

AAAA 128-bit IPv6 address

CNAME Canonical name for a given alias

NS Responsible name server

PTR Pointer to domain name (e.g., address-to-name mapping)
SRV Service locator (locates service/protocol for a given domain)
TLSA Certificate or public-key association (see DANE [61])

(b) Resource Record (RR) Types

Table 6.1: Notation used in the context of name resolution.
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6.2 Name Resolution Architecture

We now turn our attention to designing protocols to provide this ideal naming
service, which we call RAINS (a recursive acronym for “RAINS, another
Internet naming service”) [240].

Why not just use DNS?

We note that the DNS protocol as used in the present Internet, when de-
ployed with the mandatory usage of DNS Security Extensions (DNSSEC)
and one root per ISD, meets most of the properties of our ideal name
system. Only explicit tradeoffs and explicit inconsistency are not well
supported by DNS with DNSSEC. An initial approach to providing name
resolution for SCION could therefore be to borrow DNS.

Using DNS would have the following advantages:

* It leverages an existing, widely deployed protocol, with which there
is widespread operational experience.

* It allows names for SCION-enabled nodes to be registered in the
same name resolution system as the non-SCION Internet, which
should make incremental deployment easier.

It would also have some serious disadvantages:

* DNS has no concept of explicit inconsistency or explicit tradeoff,
especially for privacy.

* Even with DNSSEC, DNS has poor operational security properties,
specifically lack of query anonymity and vulnerability to abuse as
an amplification attack vector.

» Since DNSSEC would be mandatory for SCION RRs, SCION-
enabled nodes could only use signed top-level domains (TLDs).
Many country-code TLDs remain unsigned.

* Support for extension mechanisms for DNS (EDNS0) and DNSSEC
varies widely among stub and recursive resolvers, which negates the
incremental deployment advantage above: lack of interoperability of
the minimum DNS required for SCION and other DNS-supporting
software and hardware would lead to difficult-to-debug issues.

The final disadvantage is the most troubling, and led to our decision to
build a new name resolution protocol for SCION.

The RAINS architecture is simple, and resembles the architecture of DNS.
A RAINS server is an entity that provides transient and/or permanent storage
for assertions about names, and a lookup function that finds assertions for a
given query about a name, either by searching local storage or by delegating to
another RAINS server. RAINS servers can take on any or all of three roles:

« authority service, acting on behalf of an authority to ensure properly
signed assertions are made available to the system;

snquerysservicegactingrombehalfrof a client to answer queries with relevant
assertions, and to validate assertions on the client’s behalf; and/or
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* intermediary service, acting on behalf of neither but providing storage
and lookup for assertions with certain properties for query and authority
servers.

RAINS servers use the RAINS protocol, described in this section, to exchange
queries and assertions. RAINS clients use a subset variant of the RAINS
protocol (called the RAINS client protocol) to interact with RAINS servers
providing query services on their behalf. RAINS protocol connections between
servers are encrypted and authenticated. RAINS client protocol connections
between clients and query servers are encrypted and optionally authenticated. In
addition, the RAINS protocol provides object-level authentication. Section 6.4.1
provides details on bootstrapping trust using RAINS.

Authority service in RAINS resembles the role of authoritative servers in the
present DNS. Query service resembles the role of recursive resolvers. Intermedi-
ate service resembles the role of caching resolvers. RAINS is therefore a drop-in
replacement for the present DNS with better support for contexts and tradeoffs
and with mandatory delegation and authentication by signature chain. As with
DNS, a given RAINS server may play both the authority server and query
server roles at any given time, depending on configuration. However, future
implementations of RAINS could use other mechanisms for matching queries
and assertions, and moving assertions to where they can be most efficiently
matched with queries.

From the basic building blocks of these three services, any number of naming
service architectures could be built. Within SCION, RAINS authority services
are generally operated by TLDs (as isolation context root authority servers) as
well as domain name registrants or ISPs acting on their behalf. Intermediate
and query services are operated by ISPs and enterprise networks, and ASes
make query servers available via service anycast (see Section 7.5 on Page 153).

RAINS also integrates into SCION’s authentication infrastructure. End-entity
certificates for named hosts can be stored in RAINS, and RAINS intermediary
and query services support assertions signed via ARPKI (see Section 4.4).

There is an inherent tension between SCION’s architectural principle of
isolation and the need for a globally consistent namespace. RAINS on SCION
resolves this by supporting isolation transparency. Queries and assertions can
cross ISD boundaries, which is the basis of the Naming Consistency Observer
(NCO) described in detail in Section 6.5 on Page 116.
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So what is new in RAINS?

Though designed as a drop-in replacement, RAINS makes several radical
departures from DNS as presently specified and implemented:

* Delegation from a superordinate zone to a subordinate zone is
accomplished solely with cryptography: a superordinate defines the
key(s) that are valid for signing assertions in the subordinate during
a particular time interval. Assertions about names can therefore
safely be served from any infrastructure.

» All time references in RAINS are absolute: instead of a time to
live, each assertion’s temporal validity is defined by the temporal
validity of the signature(s) on it.

» All assertions have validity within a specific context. A context
determines the rules for chaining signatures to verify the validity
of an assertion. Within SCION, publicly available names within an
ISD exist within that ISD’s native isolation context. The use of con-
text explicitly separates global usage of the DNS from local usage
thereof, and allows other application-specific naming constraints to
be bound to names; see Section 6.3.3.

» Explicit information about registrars and registrants is available
in the naming system at runtime, combining the functionality of
WHOIS with the naming service.

* Sets of valid characters and rules for valid names are defined on a
per-zone basis, and can be verified at runtime.

* Reverse lookups are performed on a completely separate tree, sup-
porting delegations of any prefix length, in accordance with classless
inter-domain routing (CIDR) and the IPv6 addressing architecture.

6.3 Naming Information Model

Here we describe the information model for messages in the RAINS protocols.
For simplicity of description, we omit details on error handling and parts of the
information model necessary for protocol implementation and operation. The
detailed protocol specification is in our IETF draft [240].

RAINS operates on two different basic types of information: assertions
(Section 6.3.1) are mappings between a name and some property of the name,
which can be grouped into shards and zones (Section 6.3.2) for performance
and operational optimizations; and queries (Section 6.3.5) are expressions of
interest about certain types of information about a name. RAINS matches
queries to assertions that answer them.

6.3.1 Assertions

An assertion consists of the following elements:
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* Context: name of the isolation context in which the assertion is valid.
Section 6.3.3 provides more details.

¢ Subject: the non-qualified name about which the assertion is made. A
non-qualified name is a local, not necessarily globally unambiguous
identifier (e.g., ‘foo’), which — in combination with the zone name
(e.g., ‘example.com’) — yields the fully qualified (i.e., unambiguous)
name (e.g., ‘foo.example.com’). The domain name separator here is
¢.? and separates subject and zone.

* Zone: the name of the zone (e.g., ‘example.com’) in which the asser-
tion is made.

* Object: the data associated with the name of the given type.

» Type: the type of information about the subject contained in the assertion.
Each assertion is about a single type of data. Supported types include:

— Delegation: the authority associated with the zone identified by the
name (replaces the NS DNS record type for cryptographic delega-
tion; see below).

— Redirection: the authority servers for the zone identified by the
name (analogous to the NS DNS record type).

— Address: one or more addresses associated with the name, given
an address family (analogous to the A and AAAA DNS record types).

— Service-info: one or more layer-4 ports associated with the name,
if the name identifies a service (analogous to the SRV DNS record
type).

— Name: one or more names associated with the name (analogous to
the CNAME and the PTR DNS record types: a PTR-analog lookup is
defined by the zone in which the lookup is made).

— Certificate: an end-entity certificate representing the named entity,
for authentication of a subsequent connection attempt with the
named entity (analogous to the TLSA DNS record type).

— Nameset: an expression of the set of names allowed within a zone;
e.g., Unicode scripts or codepages in which names in the zone may
be issued. An assertion about a subject within a zone whose name
is not allowed by a valid signed nameset expression is taken to be
invalid.

— Registrar: a string identifying the registrar responsible for the
appearance of a delegation within a zone, for TLDs that allow
multiple organizations to modify their zones.

— Registrant: a string containing information about the registrant of
a zone within a TLD (analogous to the WHOIS service).

— Infrastructure-key: a public key by which a RAINS server can be
identified, for object security on RAINS messages.



108 6 Name Resolution

— External-key: a public key by which assertions in a zone can
be verified outside the delegation hierarchy, e.g., via an SCP as
described in Section 4.4.3.

¢ Issued: a timestamp at which the assertion was made.

* Expires: a timestamp after which the assertion is no longer valid.

 Signature: a signature generated by the authority, to authenticate the
assertion. This signature covers all elements within the assertion except
the signatures themselves. An assertion may have multiple concurrently
valid signatures.

Issued and expired timestamps are always expressed in terms of UTC. Since
the signature protects the timestamps as well, it is necessary to sign new as-
sertions before old ones expire. At a single point in time, it is possible to
have multiple active valid assertions with overlapping validity times for a given
{subject, zone, context, type) tuple. The union of the object values of all of
these assertions is considered to be the set of valid values at that point in time.

6.3.2 Grouping Assertions: Shards and Zones

Assertion Space

|
Zone Zone
.ch I .com
Zone | Zone I Zone | Zone
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Figure 6.1: Hierarchical zones with shards and assertions.
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nonexistence; otherwise, malicious intermediary and query services could cause
false negatives for queries by simply refusing to forward matching assertions.
RAINS provides shards for this purpose.

A shard is a set of assertions for the same authority within the same context,
protected by an additional signature over all assertions within the shard, which
has the property that, given a subject and an authenticated shard, then either an
assertion of a given type exists within the shard, or does not exist at all. We
achieve this property by associating the shard with an exclusive shard range of
names appearing in a shard: a shard with the range ‘a’ to ‘b’ contains all names
in the zone and context that sort after ‘a’ and before ‘b’. This property allows
efficient verification of the nonexistence of an assertion for a given name at the

query.

Example. Consider a zone containing the names ‘aaa’, ‘aab’, ‘baa’,
‘cat’, ‘dog’, ‘nap’, ‘yyz’, and ‘zzz’, as illustrated in Figure 6.2. This
zone could be split into three shards: {aaa, aab, baa}, {cat, dog, nap},
and {yyz, zzz}. To ensure that a proof of nonexistence can be given for any
name other than these eight using only one of these shards, the shard ranges
overlap: the first shard has the range null—-cat, the second the range baa—yyz,
and the third the range nap—null. Note that names falling between the names
in the shards can be disproved using either of the neighboring shards.

A zone is the entire set of shards and assertions for a given authority within
a given context. Figure 6.1 shows two zones (‘.ch’ and ¢.com’) with two
subordinate zones each. A zone may also contain assertions about the zone
itself; this is especially useful for self-signing root zones.

6.3.3 Isolation Contexts

All assertions are held to be valid within an explicitly named assertion context.
Assertion contexts are used to determine the validity of the signature by the
declared authority. There are two broad uses for assertion contexts: isolation

null — cat baa — yyz nap — null

] ] ] a a a ] ]
aaa aab baa cat dog nap YYZ 22z

null cat nap null

baa yyz

Figure 6.2: Eight assertions aligned in three shards with overlapping ranges.
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and local assertion. Isolation contexts allow assertions and queries about an
ISD other than that from which a query was made.

ISD n ISD n

T N
ISD r
/

ZK ZK
ZK ZK
Native isolation context Remote isolation context
isd--r-

Figure 6.3: Isolation Contexts. RZK is the root zone key for an ISD; ZK is the
zone key for a given zone.

There are two kinds of isolation context (as illustrated in Figure 6.3):

» The native isolation context is identified by the special context name
¢.?. Assertions in the native isolation context are signed by the authority
for the subject name, with a signature chain rooted at the root authority
for the ISD in which the assertion is made, such that the authority resides
within that ISD (see also Figure 3.1 on Page 49).

* A remote isolation context is identified by the special context name
“isd--r-’, where r is the number of the ISD at which the context is
rooted. Assertions in a remote isolation context are signed by the authority
for the subject name, with a signature chain rooted at the root authority
for the isolation domain identified by the context, such that the authority
resides within that ISD. Remote isolation contexts can be used to make
assertions about names as seen within other ISDs.

Assertions in an isolation context are intended to be publicly available
throughout the Internet. Since these assertions are made available to sup-
port connections to public services, resistance to zone enumeration is explicitly
not a design goal of the RAINS protocol.

Example. The following examples illustrate how contexts work. Consider
the name ‘simplon.inf.ethz.ch’ in the (default) context ‘. ’. This context
is the native isolation context, so the signature chain is determined from the
name itself, rooted at the TRC for the current ISD. If the assertion is issued by
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an authority in ISD 33, the chain is as follows:
TRC33 — RZK33 — ZK oy — ZK etnz — ZKins — assertion

where TRC33 denotes the TRC of ISD 33, RZK 33 its root zone key, and ZK the
zone key for a given delegation.

Now consider the name ‘simplon.inf.ethz.ch’ inthe context ‘isd--44-’
This is the remote isolation context for ISD 44, so the signature chain is again
determined from the name itself, but rooted at ISD 44°s TRC, as authenticated
against the current ISD’s TRC, as follows:

TRC33 — TRCy44 — RZK 44 — ZK cyy, — ZK otny — ZK ins — assertion

Note that both ISD 33 and ISD 44 use the same authority for the top-level
domain ¢ .ch’, but the verification path depends on the initial root of trust for
each ISD. Other arrangements are possible; see Section 6.5 for more.

6.3.4 Local Assertion Contexts

Isolation contexts are useful for names pertaining to services made available to
the Internet at large. The basic mechanism isolation context uses — providing
an alternate signature chain to the root of a namespace — can be generalized.
RAINS provides for local assertion contexts so that intentional inconsistency
(often implemented in the current DNS) is transparent and can be authenticated.

A local assertion context is equivalent to a RAINS subject name designating
the namespace within which the assertion is made. When a local assertion
context is present on an assertion, the assertion is verified by following the
delegation chain from the root through the names in the context before following
the delegation chain for the name. Each context is then essentially an alternate
root for a new namespace. While the same effect could be achieved simply by
concatenating names together, separating this information into explicit subject
name and context name allows the semantically meaningful part, which should
be presented to the user (the subject name), to be separated from the namespace
designator, which should be user-accessible but otherwise is a matter of system
configuration.

Example: Split DNS. Consider an organization that places its workstations
in their own top-level namespace. A workstation named simplon might carry
the full name simplon.workstations. In the current DNS, this would be
achieved through “split DNS”, i.e., answering queries about the workstations
zone only on certain networks. This arrangement, however, is operationally
brittle and can lead to leakage of both queries and names beyond their intended
scope.
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To implement this split within RAINS, ETH Informatik could place assertions
about its workstations in the local assertion context isg.ethz. ch, in essence
creating a local root namespace containing the workstations zone. The
signature chain for these assertions starts with the name components in the
context before considering the subject name:

TRC33 — RZK33 — ZK o, — ZKetnz — ZKisg — ZKyorkstations —> dssertion

Note that the zone key for workstations above is local to isg.ethz.ch,
unrelated to the zone key for the TLD workstations, if it exists.

Additional information can be placed in a context beyond the name of the
local root. This additional information is separated from the authority part by a
context marker, the special name cx—-. Additional information in a context is
used to group assertions signed by the same local root, and to provide a way to
attach contextual information to queries.

Example: CDN zones. Consider a content delivery network (CDN) sepa-
rating content into zones (data centers from which content is served) based on
geography. It creates a local assertion context some-cdn . com, and places in-
formation about the zone in the additional context part: e.g., the local assertion
context zrh.cx--.some-cdn. com names servers hosting content in a CDN’s
Zurich data center. A client could represent its desire to find content nearby by
making queries in the zrh.cx--.some-cdn. com, fra.cx--.some-cdn.com
(Frankfurt), and ams . cx--. some-cdn. com (Amsterdam) contexts. Note that,
in this case, assertions in each of these content zones will be signed by the same
delegation chain .some-cdn. com.

Local assertion contexts can be combined with remote isolation contexts, as
well; here, the remote isolation is inserted into the signature chain before the
name components in the context.

Example: Combining local and isolation contexts. Consider the name
example.com within the context zrh.cx--.some-cdn.com.isd--44-, as-
serted within ISD 33. Here, the signature chain for the context is rooted at ISD
44’s TRC, then follows the authority part of the local isolation context before
looking for names in the root:

TRC33 — TRCy44 — RZK 44 — ZK! . — ZK sone—can — ZK>2,, — assertion

m

Here ZK! __ is the zone key for the top-level domain . com, while ZK?2__ is a

local key signed by some-cdn. com.
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6.3.5 Queries

A query is a request for a set of assertions, shards, and zones supporting a
conclusion about a given subject-object mapping. It consists of the following
information elements:

¢ Context: the isolation context or local context in which responses will
be accepted. A query may also name a special any context, signifying a
willingness to receive information about names in any context available
at the query server.

* Subject: the name about which the query is made; in contrast to asser-
tions, the subject name here is fully qualified.

» Types: a list of the types of information about the subject that the query
requests.

* Valid-until: a client-generated timestamp for the query after which it
expires and should not be answered.

* Token: a client-generated token for the query, which can be used in the
response to refer to the query.

« Options: a set of options by which a client may specify tradeoffs (e.g.,
reduced performance for improved privacy).

A response to a query consists of a message containing a set of assertions
bound to the token supplied by the client in the query.

When used with the RAINS client protocol, the query server performing
verification may sign the entire response; this is an assertion that the query
server has verified the signatures from the appropriate roots, leaving the client
only to verify the query server’s signature on the whole response.

6.3.6 Registrar and Registrant Assertions

The registrant object type in the RAINS data model associates civil information
about a name’s registrant (organization or legal personality owning an entry
under a top-level domain), and in essence integrates WHOIS into the naming
service. The presence of a registrant object on a name identifies that name as a
registrant-level domain, i.e., a name that exists due to a contractual relationship
with a domain name registrar. This integration has two advantages: first, it
provides authentication of WHOIS information. Second, it allows operational
decisions to be taken based on WHOIS information.

The registrar object type identifies the registrar responsible for a given name’s
existence. This allows operational decisions to be taken based on the registrar,
e.g., to block a registrar that is predominantly responsible for malware domains.
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6.3.7 Augmented Assertion Authentication

To verify the authenticity of an assertion, a client or a query server can verify
the signature against the delegation for the zone containing the assertion. The
delegation assertion for that zone can be verified against the delegation from
the zone containing it, and so on all the way back to the root delegation from
the TRC for the isolation context. This delegation chain authentication has
identical properties to the verification of an RRSIG in DNSSEC. It also has
identical drawbacks: each level of delegation must be trusted in order to verify
a name at the leaf.

RAINS provides for signatures by external keys on assertions, i.e., those out-
side the delegation hierarchy, to provide additional and/or parallel verification
of the authenticity of the assertion. This facility, together with the certificate
object type for storage of end-entity certificates, provides two-way integration
between RAINS and ARPKI (see Section 4.3.2 on Page 84).

6.3.8 Address-to-Name Mapping

Information about addresses in RAINS is stored in a separate tree, indexed by
address and prefix. An address assertion is similar to a name assertion, but is
indexed by subject address as opposed to subject name, and the hierarchy of
names is built upon delegation from less-specific to more-specific prefixes. Ad-
dress assertions may only contain delegation, redirection, name, and registrant
type objects.

Contexts are also available for address assertions, but the native isolation
context may only contain assertions for SCION addresses within its ISD, remote
isolation contexts may only contain assertions for SCION addresses within the
remote ISD, and local contexts may only contain assertions for non-routable
addresses within the address family (e.g., RFC 1918 [210] or unique local
addresses (ULAs) [110]).

6.4 The RAINS Protocol

The details of the RAINS Protocol and the RAINS Client Protocol are specified
in an Internet-Draft [240]), and consist of a relatively simple mapping of the
information model in Section 6.3 to messages encoded in the Concise Binary
Object Representation (CBOR) data format [39] that can negotiate operation
over any underlying transport protocol that provides reliable, confidential,
and authenticated message or stream transport. Our initial implementation
experience with RAINS uses TLS over TCP.

RAINS is fundamentally a message-exchange protocol. A client sends
queriesytorasconfiguredsquerysserver(by default, this service is listening on an
AS-level service anycast address), and expects responses. A query server may
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send queries to other query servers and/or authority servers to express interest
in information about a given name. A query server sends assertions, shards, and
zones to other servers in response to queries, or based on some other interest
presumed by the query server.

Within SCION at present, query and intermediary servers are organized in a
hierarchical cache. Each AS runs a service anycast query server, and queries
that cannot be served out of that query server’s cache are delegated to the service
anycast query server of one or more upstream ASs. Query and intermediary
servers may also recurse to the authority server for the zone, according to their
configuration. However, the architecture of RAINS does not necessarily imply
hierarchical caching: intermediary servers may connect to each other via a
weighted distributed hash tree, for example, and authority servers may push
assertions to intermediary and query servers without having been asked. This
flexibility allows different networks to use different inter-server topologies for
different performance tradeoffs.

6.4.1 Query Server Discovery and Bootstrapping Trust

When a RAINS client first connects to a network, it has no information about
the available RAINS servers or the keys used to establish the authenticity of
assertions it will receive from them. We assume that both the TRC and the
address of a local RAINS query server are made available to a host during
the host’s initial configuration process. The TRC is available from the path
dissemination process (see Section 4.2.3), and refers to the naming root key
for its isolation domain. The address of the local RAINS server is provided at
endpoint configuration time.

The TRC contains the public key for the naming root for the ISD’s local
isolation context. With this root, and the address of a local query server, the
client can now begin using the query server for name resolution. Whether the
client trusts the query server to verify the authenticity of names, or does the
authenticity verification itself with the naming root key taken from the TRC,
is a matter of the client’s configuration: in general, clients will be configured
to trust their “home” query servers, and optionally to perform verification of
assertions received from local query servers on unknown networks.

Note that since the naming root key for an isolation domain is contained
within that ISD’s TRC, it cannot be forged by a malicious access network.

Clients may be configured to trust specific query servers other than the local
query server. In this case, the client performs a name resolution for the name
of its trusted query server using the local query server, verifying the signature
chain itself. If the trusted query server is in a different ISD, it issues this query
in the remote isolation context for that ISD. It then connects to the trusted query
server, verifying the TLS certificate against a pinned certificate for that server.
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Example. A mobile client, associated with giant-enterprise.co.uk and
usually connected via AS 337 in ISD 2, roams on to AS 404 in ISD 7. During
association with this network, it makes a service anycast query to find a query
server in AS 337 in ISD 2 for the address of rains-query.giant-enter-
prise.co.uk in the remote isolation context isd--9-, without delegating
assertion authentication to the anycast query server. It also queries for the
certificate of rains-query.giant-enterprise.co.uk, if this is not pinned
or otherwise available through ARPKI. Once it has the address and certificate
of the trusted query server, it connects, authenticates the trusted query server
using the certificate, and begins issuing queries, delegating authentication to
this trusted server.

6.5 The Naming Consistency Observer (NCO)

Isolation, as noted, is a fundamental principle of the SCION architecture. At
the same time, most users of naming systems expect global consistency in name
resolution: even if a name does not resolve to a given address everywhere,
the name should always point to the same service or content. “Owners” of
names in the global namespace further expect exclusion: that their publication
of assertions of a given namespace precludes other entities from publishing
assertions about the same namespace. Global consistency and exclusion are
impossible without a single global root of trust for naming, which runs counter
to the principle of isolation.

To reconcile this conflict, RAINS provides naming isolation transparency.
Entities connected to one ISD can observe name assertions in any remote ISD.
An additional facility built on top of RAINS, the naming consistency observer
(NCO), provides continuous monitoring of inconsistencies among assertion
signature chains in different ISDs, which ensures that any violation of global
consistency and/or exclusion is publicly observable. The NCO operates on the
principle of deterrence: since illegitimate behavior is made public, it should be
rare.

Recall from Section 3.4 on Page 48 that, in the normal case, different ISDs
have different root zones signed with different keys (derived from the ISD’s
TRC), but each root zone delegates to the same key for each TLD as shown
in Figure 3.1 on Page 49. However, there are certain cases where an isolation
domain might want to “edit” a TLD, by providing delegation to a different set
of registrant-level domains (RLDs) (the level below the TLD, corresponding to
organizations or other “owners” of names that have paid a registrar to place an
entry in a name registry) than that provided by the primary operator of the TLD,
or by failing to sign a delegation to a TLD. It does this by operating a shadow
authority for that TLD, which may implement one of the following policies for
each TLD or RLD:
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* New TLD adoption and TLD quarantine: New TLDs created within
a set of ISDs may be held over for some period of time while the TLD
operator’s practices are evaluated by the ISD.

* RLD quarantine: Newly created RLDs may only be available within an
ISD’s native isolation context after some period of time has passed, e.g.,
to ensure that they are not primarily used for abusive purposes (such as
phishing landing pages or malware command and control).

* RLD blacklist: RLDs that are exclusively or primarily used for abuse
can have their delegations from the TLD removed by an ISD after having
this abuse demonstrated according to some policy followed by each ISD.

In any case, edits to TLDs are limited to either delegating to the RLD that
the TLD operator delegates to, temporarily failing to delegate to an RLD (in the
case of quarantine), or permanently failing to delegate to an RLD (in the case
of blacklisting). Delegation to a different RLD key than that delegated to by
the TLD operator — completely inconsistent naming — is treated as an error
condition.

The purpose of the NCO is to make all such inconsistencies in native isolation
contexts in different ISDs globally transparent, to detect and allow ISDs to
correct unintentional inconsistencies, and to detect and repair error conditions.
The NCO consists of a distributed service, run on servers in each ISD. For each
ISD, it provides an authoritative view of that ISD’s naming consistency policy
(whether it performs RLD quarantine and what its timeouts are, its enumer-
ated set of TLD delegations, and its enumerated RLD blacklist), and accepts
RAINS delegation assertions sampled from various points in the infrastructure
to compare against those policies. Sampled delegation assertions are shared
with NCO servers in other ISDs, to be compared with those ISDs’ views of the
same delegations in their own native isolation context.

Sources of sampled delegation assertions include:

* Query servers can be configured to send a sampled set of delegation
assertions used in verifying assertions on behalf of clients to the NCO
server for their ISD.

* TLD authority servers can bulk-transfer delegation assertions to the NCO
servers for each ISD on any change.

e RLD authority servers can send their public keys (in the form of a self-
signed delegation assertion inside a local context) to the NCO servers for
the ISD(s) providing their connectivity on any change.

* Specially deployed NCO clients can query for RLD assertions and report
the resulting delegation assertions to designated NCO servers. The set of
query targets can be derived from other sources of data available to the
NCO.

Since inconsistencies uncovered by the NCO generally require human inter-
vention and/or policy decisions to correct, the output of this process is made
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available via a RESTful API and a web front end, also operated by each ISD.
Remedies for correction of intentional errors and undeclared inconsistency are
a matter for inter-ISD coordination (see Section 3.5 on Page 51).

Since the NCO operates primarily through deterrence, it is not necessary
that sampled delegation assertions cover every inconsistency with policy within
some bounded time. It is enough that ISD operators know that edits they make
to TLD delegations are visible, and that someone is watching. The sampling
rate for sampled assertions at a query server should be selected to balance the
tradeoff between the likelihood that maliciously transient inconsistency goes
undetected with the overhead of sending assertions to the NCO.
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In this chapter, we discuss SCION’s control plane, whose main purpose is to
create and manage path segments, which can be combined into forwarding
paths to transmit packets in the data plane.

We first describe how path exploration is realized through beaconing, then we
discuss the management of path segments (registration, lookup, and revocation),
failure resilience, and the use of anycast to enable services to communicate with
each other. We also show how SCION allows AS-level hierarchical anycast
services to be built, and finally we describe the SCION Control Message
Protocol (SCMP).
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7.1 Path Exploration and Registration

In this section, we go into the details of generating and propagating path-
segment construction beacons in SCION. We describe the control-plane format
of a path, how beacon construction is initiated and propagated, and how ASes
generate diverse paths.
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7.1.1 Path-Segment Construction Beacons (PCBs)

SCION introduces path-segment construction beacons (PCBs) to enable path
exploration and registration. PCBs are used for intra-ISD and inter-ISD (core)
path exploration, and contain topology and authentication information. They
can include additional metadata that helps with path management and selection.
Broadly speaking, a PCB represents a single path segment that can be used to
construct end-to-end forwarding paths. Formally, a PCB is defined as

PCB = (INF | ASE, | ASE, | ... | ASE, ) (.1)

where INF is an info field, and each represents an AS entry that contains
all information about a particular AS on the path segment represented by the
PCB.

In the following, we describe all elements included in a PCB. The actual wire
format of a PCB is presented in Figure 15.13 on Page 357.

Info Field (INF)

The first component of every PCB is the info field (INF), which provides basic
information about the PCB. Specifically, the info field contains the following
elements:

INF = ( Flags;yr | TS || ISD || SegLen ) (7.2)

where Flags;yr is used in the forwarding path to describe the type and the
direction of the constructed end-to-end path, TS is a timestamp that denotes
when the PCB’s propagation started, ISD is an identifier of the isolation domain
within which the beaconing was initiated, and SegLen denotes the length of the
forwarding path’s segment (this field is set to O during the beaconing).

More information about the format of the info field is provided in Sec-
tion 15.1.3 on Page 347.

AS Entry (ASE)

The complete information about an AS in a PCB is called an AS entry and is
defined as follows:

= {( Meta | HE || | (. | RevToken | Ext |£) (7.3)

The Meta field contains metadata describing the AS that generated a given entry.
It contains ISD and AS identifiers (which together globally identify the AS),
followed by the TRCVersion and CertVersion fields, which specify the TRC
and certificate version number that the AS uses. It also signals what size of
interfacesidentifiersisiusedsbysthesASyand the size of the maximum transmission
unit (MTU) within the AS’s network. Then, an AS entry consists of a single
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hop entry HE, a list of optional peer entries , a revocation token RevToken,
which enables revocation of any interface of the entry in an authenticated
fashion (as we describe in Section 7.3), and optional beacon extensions Ext.

Each AS entry is signed with a private key that corresponds to the public key
certified by the AS’s certificate with version CertVersion. The corresponding
signature ¥ includes the PCB’s metadata INF, the current AS entry ASE; (with-
out signature), and all previous AS entries in the PCB. Formally, the signature
Y, of AS entry ASE; in a PCB is defined as follows:

H I ) (7.4)

where ASE] is the AS entry ASE; without its signature, and K is the AS’s private
key (the corresponding certificate can be identified through the CertVersion
field). Beacon extensions can contain unprotected fields, which are not included
during the signature creation.

L = Signg (INF | I |-

More information about the AS entry is presented in Section 15.3.1 on
Page 357.

Hop Entry (HE)
A hop entry has the following format:
HE = { InISDAS | EgISDAS | InlF | EgIF | InMTU || HF y; ) (7.5)

where InISDAS is a concatenation of the ISD and AS identifiers of an ingress
(i.e., the previous) AS, while EgISDAS identifies an egress (i.e., the next) AS.
If a hop entry belongs to the first/last AS entry, then the ingress/egress ISD and
AS identifiers are set to 0. The InIF and EgIF fields denote an identifier of the
ingress and egress AS’s interface, respectively, and the InMTU field specifies
the MTU of the ingress interface. These fields help an end host to identify
paths at the interface-level granularity and their MTUs. The last field HFy is a
hop field that includes the authenticated information of the ingress and egress
interfaces.

To allow end hosts to explicitly select paths to reach other end hosts, the hop
fields are propagated with the corresponding topology information to the end
hosts (see below).

Details of hop entries are discussed in Section 15.3.2 on Page 358.

Peer Entry (PE)

Through the peer entry, an AS announces that it has a peering connection to
another AS. Peer entries have the same format as hop entries, however, the first
PeerISDAS pair identifies a peer AS (not an ingress AS):

= ( PeerISDAS || EgISDAS | PeerlF | EgIF || PeerMTU | HFp ) (7.6)
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The PeerlF and EgIF fields describe interface identifiers of the peer and egress
ASes, and the PeerMTU field is an MTU value of the peer interface. Contrary to
the hop field HF g in a hop entry, the hop field HFp in a peer entry authenticates
the permission to use the peering between the peer and an egress interface.

More details on peer entries can be found in Section 15.3.2 on Page 358.

Hop Field (HF)

Finally, we introduce the hop field (HF), which is contained in hop entries and
peer entries. A hop field is used directly in the data plane for packet forwarding:
it specifies the incoming and outgoing interfaces of the ASes on the forwarding
path. To prevent forgery, this information is authenticated.

A hop field encodes one of three cases for connecting adjacent ASes:

1. customer — provider: the egress interface connects the provider (who
created the hop field) with its customer,

2. core AS — core AS: the hop field encodes information for the forwarding
performed between core ASes,

3. peering links: the peer interface connects the AS (that created the hop
field) with its peer AS over a peering link.

A hop field can be part of a hop entry or of a peer entry. We first discuss the
case in which the hop field is contained in a hop entry. The hop field is then
represented as follows:

HFy = { Flagsyy | ExpTime | InIF | EgIF | oy ) (7.7)

where the Flagsy field describes the purpose of the hop field (thanks to this
field, it is possible to encode forwarding cases other than the ones listed above,
see Section 8.2), ExpTime defines for how long the hop field is valid (an
expiration time of a hop field is an offset relative to the PCB’s info field
timestamp 7), InlF identifies the ingress interface (according to the direction
of the beaconing), EglF identifies the egress interface, and oy is a message
authentication code (MAC) computed as

on = MACk(TS | Flagsy | ExpTime | InIF | EgIF | HF') (7.8)

where Flagsy is the Flagsyy field with only immutable flags set (see Sec-
tion 8.1 on Page 162), HF' is the hop field of the previous AS (according to
the direction of the beaconing) without its flag field included, and K is a local
symmetric key, known only to the AS that creates the hop field.

In case the hop field is contained in a peer entry, the structure is slightly
different:

HEp = (Flagsyr | ExpTime | PeerlF || EGIF || op ) (7.9)
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The differences to the previous case are (a) replacing the InlF field with the
PeerlIF field identifying the ingress interface of the peering link, and (b) the
authentication code op, which is now computed as

op = MACk (TS | Flagsyy | ExpTime || PeerlF | EgIF | HF};) (7.10)

where Flagsy is the Flagsyy field with only immutable flags set (see Sec-
tion 8.1 on Page 162), and HF'y is the hop field from Equation 7.7 without its
flag field included. In other words, the verification of a peering link requires a
locally generated provider-customer hop field.

More details on the format of hop fields is provided in Section 15.1.3 on
Page 348.

7.1.2 Intra-ISD Beaconing and Path-Segment Registration

Paths in SCION are made available through the following two procedures:

1. beaconing (i.e., path exploration), which builds and propagates PCBs
(from which path segments are created); and

2. registration of path segments to make them available to other entities.

The PCB generation process is initiated by each core AS, once per propa-
gation period. The propagation of PCBs immediately follows PCB generation.
When a PCB is received by an AS, its beacon server registers the contained
path segment at the path servers, extends the PCB, and propagates the PCB
further downstream. These steps are presented in Figure 7.1 on the next page.
The propagation period is a parameter specified by each AS; its default value is
5 seconds in our current implementation.

Initiating Beaconing

Intra-ISD beacons are disseminated top-down (i.e., from core ASes to leaf
ASes). Each core AS, through its beacon server, initiates the path exploration
process by creating an initial PCB and propagating it downstream to each of its
customer ASes. A core beacon server propagates a PCB to each customer. The
process is repeated every propagation period. The beacon server inserts (among
other information) the initial AS entry in the PCB. In this case, ’S
hop entry HE includes an initial hop field with ingress interface identifier set to

e (indicating an empty value)
HFy = ( Flagsyp | ExpTime | o | EGIF | 00 ) (7.11)

since HF; represents the first hop and as such has no ingress interface (see
Equation 7.7). We also use the empty value null for the previous hop-field
entry:

0p = MACk(TS || Flags'yp || ExpTime || o || EgIF | null)
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Upstream Local Local Remote (Core) Downstream
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TRC/Cert Req
TRC/Cert verify/cache

Figure 7.1: Message sequence chart illustrating the beaconing and path-segment
registration process.

since no previous hop field exists (see Equation 7.10).

Using the combination of the info field’s absolute timestamp TS and the hop
field’s relative duration ExpTime, each AS computes the absolute expiration
time of the hop field. When the expiration time is exceeded, the hop field is
considered expired and an AS’s border router (the one assigned to Egl/F) will
drop packets with expired hop fields. The initial hop field denotes the beginning
of a path and authenticates a forwarding decision for every packet that

* enters the AS through the interface Eg/F and terminates inside the AS;

* originates from the AS and exits through the interface EgIF’; or

¢ at this AS, switches to another path (which has to begin at this AS as
well).
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Finally, the beacon server signs the beacon and sends it to a border router
(which corresponds to the EglF identifier as specified in the hop field). The
beacon server knows the mapping between interface identifiers and border

router addresses from the AS discovery service (see Section 7.4.6).

PCBs are disseminated within packets addressed to the beacon service.!

Initial PCB packets have to be processed differently from data packets as they
do not contain full forwarding paths. To enable communication between two
beacon servers in neighboring ASes a special one-hop path is created (see
Section 15.1.4 on Page 351). The PCB is sent to the egress router, which then
forwards it to the neighboring border router of the downstream AS.

Beaconing by Non-core ASes

The ingress border router of the downstream AS receives the PCB packet,
detects that the destination is a SCION service address, and sends it to one
of its beacon servers.” The beacon server verifies the structure and the sig-
nature of the PCB. The PCB contains the version numbers of used TRC(s)
and certificate(s). It enables the beacon server to check whether it has the
relevant TRC(s)/certificate(s); if not, it can be requested from the upstream
beacon server, and then forwarded to a local certificate server. After the PCB
verification is successful, the beacon server adds the PCB to its local database.
The process is depicted in Figure 7.1.

Every propagation period (the time interval is configured by the AS), the
beacon server selects the ¢ best PCBs from its database and continues path
exploration by sending the PCBs to its downstream ASes (in our current imple-
mentation ¢ = 5). PCB selection criteria are set according to local AS policies.
The selection process is presented in detail below in Section 7.1.4.

For every selected PCB and for every interface that connects to a downstream
AS, the AS creates a new PCB by adding a new AS entry. The AS entry
includes an HF that authenticates the permission to send traffic between ingress
and egress interfaces (see Equation 7.7), and HFs that authenticate forwarding
between the peer interfaces and the egress interface (see Equation 7.9). (The
AS can set an HF as forward-only, which denotes that the HF can be used only
for transit, i.e., cannot be used to deliver a packet to the AS’s end hosts.) The
set of £ created PCBs are sent to the border router corresponding to the egress
interface and forwarded to the downstream AS (see Figure 7.1).

ISCION introduces service addresses to address a service instance (with unknown actual
address) in a remote AS. See details in Section 7.4.7 and Section 15.2.

2[f there are several beacon servers in the' AS, the PCB is sent to only one. The details are
presented in Section 7.4.7 on Page 152.
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Path-Segment Registration

Intra-ISD beaconing provides ASes with paths to communicate with their
core ASes. To make paths accessible to their own and remote end hosts,
the paths need to be published. Every time interval (called a registration
period, determined by the AS, and set by default to 5 seconds in our current
implementation), a beacon server selects two sets of path segments:

1. up-segments: to allow a local end host to contact core ASes, and

2. down-segments: to allow remote end hosts to fetch paths from core ASes
towards a target AS.

An AS can set different selection policies for these two sets (see Section 7.1.4).

More specifically, in every registration period, beacon servers execute the
following:
1. From the cached PCBs, select k PCBs that will be used as up-segments,
and another k PCBs that will be registered as down-segments. As a
default value, we use k = 5.

2. Remove all unprotected (i.e., non-signed) fields from the beacon exten-
sions.

3. To every selected PCB, add a new AS entry with a final hop field of the
following format:

HFy = { Flagsyy | ExpTime | InIF | o || 0 ) (7.12)

Only the ingress interface identifier is specified (i.e., EgIF is set to e)
since the path ends at the AS.

4. If the AS has peering links, for each peering link add to the AS entry a
hop field of the following format:

HFp = ( Flagsyy | ExpTime || PeerIF | o | ¢ ) (7.13)

Only the peer interface identifier is specified (i.e., EgIF is set to e) since
the path ends at the AS.

5. Sign every selected beacon and append the computed signature. Such
modified PCBs are then called path segments.

6. Register the resulting up-segments with a local AS’s path server, and the
down-segments with a core path server from a local ISD.

Unprotected fields of beacon extensions are removed for efficiency reasons
(to reduce the size of the path segments). Path-segment registrations are sent as
packets addressed to the path service (see Section 15.2 on Page 355). The format
of the path registration message is presented in Section 15.4. Up-segments are
registered at a local AS’s path server, while down-segments are registered at a
core path server from a local ISD. We note that the down-segment registration
processyissmorescomplexgsineesthescore path server, which received a down-
segment, has to replicate the segment among all core ASes within its ISD. Due



7.1 Path Exploration and Registration 127

to such replication, all core ASes can serve down-segments for all non-core
ASes from the same ISD.

7.1.3 Inter-ISD Beaconing and Path-Segment Registration

The inter-ISD (or core) beaconing process is conducted only by core ASes in
order to create core-segments, which enable two core ASes to communicate.
The structure of inter-ISD beacons is identical to the structure of intra-ISD PCBs
(see Section 7.1.1). However, the process of core beaconing differs slightly from
the intra-ISD process. The main difference is that every core AS periodically
initiates core beaconing by sending beacons to all its neighbor core ASes (not
to its customers, as in the intra-ISD case). In inter-ISD beaconing the core
PCB from each core AS is flooded to all other core ASes (forming a complete
flooding tree), whereas in intra-ISD beaconing only PCBs originating from
core ASes are disseminated along provider-customer links (forming a more
limited distribution tree compared to core PCBs). For inter-ISD beaconing, our
implementation sets the same default parameters as in the intra-ISD case (i.e.,
propagation and dissemination periods are 5 seconds long, and £ = k = 5).

Initiating Core Beaconing

Inter-ISD PCBs (also referred to as core PCBs) are disseminated from every
core AS to all other core ASes. Each core AS, through its beacon servers:
(a) initiates the path exploration process by creating an initial core PCB and
propagates it to all neighbor core ASes, and (b) propagates PCBs originated
by other core ASes. The process is repeated in every propagation period (the
period can be adjusted by every core AS, as before).

Among other information, the beacon server adds the following information
to a core PCB: the current timestamp, the version of the used TRC and certificate,
and the first AS entry, which contains only a single hop entry (peer entries are
not added). This hop entry contains the ISD and AS identifiers of the current and
the next ASes, and carries the hop field in the format presented in Equation 7.11.
Similarly to the intra-ISD exploration process, the hop field denotes a beginning
(or an end) of a path and authenticates a forwarding decision for every packet
that

¢ comes from the interface Eg/F and terminates inside the AS, or

* originates from the AS and exits through the interface EgIF, or

* at this AS, switches to another path (which has to begin at this AS as
well).

Finally, the beacon server signs the PCB and sends it to the border router,
which processes it similarly to the intra-ISD case (i.e., the PCB is finally passed
to a neighbor beacon server). Note that the neighboring AS can be in the same
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or in a different ISD, and consequently, the ISD identifier included in the info
field describes only the ISD of the PCB originator.

Beaconing by Core ASes

After an ingress border router passes a core PCB to a beacon server, the beacon
server verifies the PCB, and similarly to the intra-ISD case, the beacon servers
exchange TRC(s) and/or certificate(s) (if the TRC and/or certificate version has
changed). As beaconing in the cores is based on flooding, it is necessary to
avoid loops during path creation. A core beacon server avoids loops at both the
AS and ISD levels as follows:

¢ it discards PCBs that include an AS entry created by itself,
¢ it discards PCBs that re-enter an already visited ISD.

Finally, the beacon server adds the PCB to its local database, as beacon servers
collect PCBs to all seen ASes.

In every propagation period, the beacon server selects the ¢ best PCBs for
every core AS from its database. PCBs are selected per unique core AS, as the
goal of core beaconing is to have path(s) that connect every pair of core ASes.
The selection criteria are set according to local AS policies, which are presented
in detail in the next section. For every such selected PCB and for every interface
that connects to a core AS, the beacon server creates a new PCB by adding a
new AS entry. The AS entry includes only a single hop field that authenticates
forwarding between ingress and egress interfaces (see Equation 7.7). The set
of such created PCBs is sent to the border router corresponding to the egress
interface and finally to the neighbor core AS.

Core Path-Segment Registration

The core beaconing process creates core AS path(s) to other core ASes. These
paths have to be registered at local ASes’ path servers so that local and remote
end hosts can obtain and use them. In contrast to the intra-ISD registration
procedure, there is no need to register core-segments with other ASes (as each
core AS will receive PCBs originated by every other core AS).
In every registration period, a core beacon server
1. selects the k best PCBs towards each core AS observed so far, from the
cached core PCBs;
2. removes all unprotected fields from the beacon extensions;

3. adds a new AS entry to every selected PCB with a hop field of the
following format:

HF = { Flagsyp | ExpTime | InIF | o || o) (7.14)
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(only the ingress interface identifier is specified (i.e., EgIF is set to e)
since the core path ends here);

4. signs every selected PCB and appends the computed signature. Such
modified PCBs are called core-segments;

5. registers the resultant core-segments with a local AS’s path server.

7.1.4 Beacon and Path-Segment Selection

As an AS receives a series of intra-ISD or core PCBs, it must select the PCBs
it will use to continue beaconing and to register path segments at path servers.
A non-core AS must select (a) a subset of PCBs to propagate downstream, (b)
up-segments to register at a local AS path server, (c) down-segments to register
at a core path server. A core AS must select (a) a subset of PCBs to propagate
to neighbor core ASes, and (b) core-segments to register at a local AS path
server. Core ASes do not register core-segments at remote AS path servers, as
due to core beaconing (see Section 7.1.3) all core ASes find a set of paths to all
other core ASes.

The selection process is based on path properties (e.g., length, disjointness
across different paths) as well as PCB properties (e.g., age, last transmission
time). In this section, we describe the process by which an AS evaluates and
selects PCBs. The beacon server of an AS maintains a data structure of received
PCBs under consideration for downstream propagation and registration at path
servers. Each AS can specify how PCBs are evaluated or eliminated from
consideration through a local policy.

Although the policy-based selection process presented here enables a variety
of path choices, ASes may need to express more sophisticated routing policies.
In Section 10.9 we discuss how SCION can support routing policies fitting
today’s Internet business models.

Beacon Store

Each time a beacon server receives a PCB, it chooses whether or not the PCB
will be stored as a candidate (i.e., under consideration for propagation and
registration). To manage the set of candidate PCBs, the beacon server maintains
a database of PCBs called the beacon store. The beacon store has a fixed
capacity n and supports the following operations:

* add: add a new PCB to the beacon store if it complies with the selection
policy. If the beacon store already contains n PCBs, remove the least
desirable PCB.

* remove: remove a PCB from the beacon store.

* select: select a number (specified as a parameter) of PCBs.
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(a) Path Length (b) Peering Links (c) Disjointness

ISD Core

ISD Core

Figure 7.2: Example graphs to illustrate beacon and path-segment selection
based on different path properties.

Through the above operations, the beacon store is thus implicitly responsible
for applying the AS’s selection policy (described below). In addition to storing
PCBs, the beacon store also stores metadata for each PCB, such as when the
PCB arrived at the beacon store and when it was most recently forwarded to a
downstream AS.

Selection Properties

We propose a set of metrics that represent a range of desirable properties in a
path or PCB:

* Path length: The first property we consider is path length. In this case,
path length is defined as the number of hops from the originator AS to
the local AS. This can give an indication of the path’s latency (although
there are many other factors affecting latency).

In Figure 7.2a, we can see that AS G will receive the paths AG, BDG,
and CEFG, which have lengths of 1, 2, and 3 hops, respectively. Based
purely on length, G would prefer AG first, followed by BDG and CEFG.

* Peering ASes: We also consider peering ASes, defined as the number of
peering ASes from all non-core ASes on the PCB. The number of peering
ASes is important because a greater number of peering ASes on a PCB
increases the likelihood of finding a shortcut using that segment.

In Figure 7.2b, AS L receives seven distinct PCBs, all of which start at B
and are three hops long. However, the number of peering ASes in these
in BG to four (in BEIL).
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* Disjointness: Unlike other properties, the disjointness of candidate PCBs
(illustrated in Figure 7.2c¢) is calculated relative to other PCBs and thus
depends on PCBs that have been previously sent. We use the two fol-
lowing definitions of disjointness: paths can be vertex-disjoint (i.e., they
have no common upstream/core AS for the AS the beacon store is in) or
edge-disjoint (i.e., they do not share any AS-to-AS link). Both definitions
are useful in this context: vertex-disjointness allows path diversity in the
event that an AS becomes unresponsive, and edge-disjointness provides
resilience in case of link failure.

¢ Last reception: The last reception of a PCB is defined as the time that
has elapsed since the PCB arrived at the AS’s beacon store. This metric
is important because a short elapsed time indicates that upstream ASes
found the PCB desirable and fewer catastrophic events (e.g., a failing
link) can have affected the segment since it was propagated. Thus, older
PCBs can be considered as more stable, thus more preferable. Because
upstream ASes may propagate the same PCB multiple times, a beacon
store may receive a PCB from its upstream AS that it has already received
before. In this case, the beacon store simply updates the PCB’s arrival
time. On the other hand, new paths (never seen before) can also be
desirable and should be propagated quickly to announce new paths.

e Last transmission: The time that has elapsed since the AS’s beacon
server last propagated the PCB must be taken into consideration. If
the PCB has never been propagated downstream, then the beacon store
assigns the PCB’s last transmission a value of co. The last transmission of
a path is important because it allows the beacon store to take into account
paths that have not been propagated in a while and thus can improve the
diversity of beacons transmitted downstream over time.

* Feature support: Beacon selection can be extended to support richer
criteria, such as bandwidth reservations in SIBRA (see Chapter 11),
consistent support for a certain SCION extension on a path, or support
for a specific cryptographic algorithm, for instance.

Selection Policy

Each AS has a selection policy, which governs the storage and selection of
PCBs at all beacon servers in the AS. In particular, a selection policy specifies
the following:

* the maximum number n of candidate PCBs to store,

* the number k of up-path segments to register at a local path server each
registration period,

 the number k of down-path segments to register at a core path server
(specified only by non-core ASes) each registration period,
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¢ the number ¢ of PCBs to propagate (downstream or to core ASes) each
propagation period,

* a list of blacklisted ASes that must not appear in any PCB sent down-
stream or registered,

* aset of minimum and maximum allowable values for properties, and

* a set of weights representing the relative importance of the previously
mentioned properties in evaluating and selecting PCBs.

Beacon policies are local to the AS and it might be in the commercial interest
of the AS to keep them private.

Filtering Beacons

When the beacon server receives a PCB, the beacon store first checks the
path against a series of filters defined by a selection policy. These filters
check whether any ASes in the segment are blacklisted, and whether the path
properties fall between the minimum and maximum allowable values specified
in the selection policy. The latter type of filtering allows paths with certain
undesirable properties, such as being longer than a threshold number of hops,
to be ignored as a candidate PCB.

Selecting PCBs and Path Segments

The beacon store computes the overall quality of a PCB as a weighted sum,
using the weights specified in the selection policy. Once it has computed
the quality of all candidate PCBs, the beacon server selects the top-ranked
PCBs. Time-based path properties, such as age and transmission time, must
be recomputed when the beacon store selects PCBs. Disjointness is based on
previous operations and must also be computed when PCBs are selected (i.e.,
every propagation or registration period).

7.2 Path Lookup

Path lookup is a fundamental building block of SCION’s path management
architecture. It enables end hosts to obtain path segments found during path
exploration. End hosts can then construct end-to-end paths from a set of possible
path segments returned by the path lookup process.

7.2.1 Requirements and Design Goals

We considered the following requirements and design goals that led to the
design of SCION’s path lookup infrastructure.
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Low Latency

In the absence of a cached path at end hosts, a path lookup needs to be performed
before a packet can be sent to a new destination. It is therefore performance-
critical that a path lookup can be performed as fast as possible.

Effective caching is critical for the performance and scalability of path lookup,
as it can decrease the latency of path lookups. To minimize the number of path
lookups, path servers and end hosts should also cache paths for a short period
of time to exploit the temporal locality of network destinations.

Scalability

Path lookup not only has to scale with respect to the number of users, but also
to an increasing number of paths available in an ever-expanding network such
as the Internet.

Caching can help with scalability with respect to an increasing number of
requests. To ensure scalability with respect to the number of paths, the path
lookup infrastructure can only contain a subset of all available Internet paths. It
is also crucial that the amount of state needed to store and serve paths be as low
as possible.

Availability

If the path lookup infrastructure experiences outages, end hosts might be unable
to look up new paths, thus crippling the entire communication infrastructure.
The path lookup infrastructure should therefore be distributed and replicated
to guarantee high availability even when single parts of the system fail or are
under attack, e.g., during a DDoS attack.

Cache Consistency

We argued that the use of caching is critical for path lookup with respect
to performance, scalability, and availability. However, caching introduces
consistency problems. If a cache delivers stale paths, then the performance of
the path lookup and all upper layers are negatively impacted; the severity of
this problem increases the more distributed the path lookup infrastructure is.

Security

In terms of security, the following properties are critical for the path lookup
infrastructure to function properly in the presence of an attacker.

Firstend-hosts;should;be.able toverify the authenticity of paths they receive
from path lookup, 1.e., that path segments were registered by the true destination
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and have not been altered since registration. This prevents an attacker from
tricking an end host into using a fake path (similar to cache-poisoning attacks
in DNS [177]).

Second, a path should only be removed from the path lookup infrastructure
with proper authorization (apart from expiration). Otherwise, an attacker could
disconnect an AS from the Internet by repeatedly revoking all paths to that AS.

Third, not all paths should be public. While path servers facilitate the retrieval
of paths, it should be possible to distribute paths out of band directly to potential
senders. SCION supports non-registered (or hidden) paths, which can serve as
an important ingredient in DDoS attack defense.

7.2.2 Path Lookup Process

End-to-end communication is enabled by a combination of up to three path
segments that form an end-to-end path. The goal of the path lookup process is
to provide a source end host with diverse path segments and at least one set of
connecting path segments, i.e., path segments that can be combined towards
the destination by simply joining their corresponding endpoints. Depending on
the location of source and destination end hosts, the path lookup process differs
slightly.

Source and Destination from Non-core ASes

A source end host initiates a path lookup by issuing a path request, containing
the destination ISD and AS identifiers, to a local path server. The local path
server then forwards the request to one of the core path servers, using an
up-segment that was previously registered by the beacon server (if the lookup
succeeds, the local path server will append this up-segment to the corresponding
response). At this point there are two possible scenarios:

1. The destination is in the same ISD as the source. In this case the core
path server knows the down-segments to reach the destination and returns
up to k segments to the local path server.

2. The destination is in a different ISD than the source. In this case, the
core path server requests the down-segments from a core path server in
the destination ISD (using a core-segment), before returning them to the
local path server.

In both cases, the first core path server (the one requested by the local path
server) returns up to k core-segments, which connect its AS and the ASes that
originated the down-segments. If a down-segment originates in the core path
server’s AS, then the core-segment is not required as the up- and down-segments
directly connect. However, it is guaranteed that if path lookup succeeds (i.e.,
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an end host receives a set of path segments), then there is at least one set of
connecting path segments; thus the end host is able to build a forwarding path.

The local path server then returns up to k up- and k down-segments (and
optionally up to k core-segments — if required) to the source. The up-segment
used for querying the core path server is included in the response. If the source
wishes to communicate through the core and the received core-segments are
unsatisfactory, then additional core-segments may be fetched (by asking another
core AS). Depending on the received segments, there are different ways a source
can combine them to create an end-to-end path. We describe these options in
detail in Section 8.2.

End hosts and path servers accept path segments only when they are verified.
This verification may require contacting the server that sent the given path. The
details of this process are described in Section 4.2.3.

Example. An example of the entire path lookup process is depicted in Fig-
ure 7.3. In this example, we assume that the desired paths are not yet cached
in the path servers. First, an end host from AS (1,10) (ISD 1, AS number 10)
that wishes to contact a host from AS (2,23) contacts its own local path server,
requesting path segments connecting source AS (1,10) with the destination
AS (2,23). The local path server, using an up-segment, contacts a core path
server inside the local ISD (i.e., AS (1, 1)), requesting path segments from the
core path server’s AS (1, 1) to the destination AS (2,23). (Note that the local
path server postpones this request if it has no up-segment.) The core path server
of (1,1) takes any core-segment to an AS from the destination ISD 2, and
queries this AS’s path server. (This request is postponed until a core-segment is
available.) In our example, the path server in AS (2,2) is asked about down-
segments of the destination AS (2,23). We emphasize that the down-segments
of AS (2,23) do not have to originate from AS (2,2), they can originate from
any other core AS from ISD 2. As soon as the core path server from ISD 2 has
appropriate down-segments, up to k of them are returned to the core path server
in AS (1,1), which verifies the path segments (it can query the origin core
path server for certificates or TRCs if locally cached information is missing or
outdated). Next, this core path server has to find up to k core-segments between
its AS (1,1) and ASes that originated the received down-segments. At least
one such core-segment has to be found, otherwise the path server waits for it.
Then, down-segments with the corresponding core-segments are returned to the
local path server of AS (1,10) (which verifies the path segments as well). The
local path server adds up-segments to the set of obtained paths, adds additional
core-segments (if they are cached) connecting up- and down-segments, and
sends the entire response to the end host. The up-segment to the core AS (1,1)
has to be within this response. Finally, the end host verifies the received path
segments.
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End host Local path server Core path server Core path server

(1,10, 1.2.3.4) (1,10, 1.1.1.3) (1,1, L1.L1) (2,2,222.1)

Path req.: (1,10) — (2,23),

‘Wait for up-segment

Path req.: (1,1) — (2,23)

‘Wait for core-segment

Path req.: * — (2,23)

| Wait for (2,23)’s down-seg. |

| Create (2,23)’s path reply |
Path(s)

TRC/cert req.

Verify paths TRC/cert

| Add core-segments to reply |

Paths

TRC/cert req.

Verify paths TRC/cert

| Add up- and core-segments to reply |

Paths

TRC/cert req.

Verify paths TRC/cert

Figure 7.3: A path lookup example.

Source and/or Destination from Core AS(es)

When source and destination end hosts reside in the core, the queried path server
returns up to k core-segments towards the destination. When the source is within
a core AS, while the destination is within a non-core AS, the source receives
up to k down-segments, and up to k core-segments between the source AS and
the originators of the down-segments (to guarantee that there exist connecting
path segments). Similarly, for a source in a non-core AS and the destination
within a core AS, the source is provided with sets of up to k up-segments, and
uested core path server’s AS and the
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destination AS. As in the previous cases, received path segments are verified by
the receivers.

7.2.3 Caching

To reduce path lookup latency, path servers form a hierarchical caching in-
frastructure. Every path server internally maintains a cache of path segments
received during path lookup. There are three events that trigger the removal of
a path segment from a path server’s cache:

1. The cache fills up completely. Path servers use the least-frequently-used
replacement strategy to replace path segments if the cache completely
fills up.

2. A path segment expires. Each path segment contains an expiration time
(up to 24 hours) after which a path server evicts the path segment from
its local cache. The expiration time of a path segment is the minimum of
all hop-field expiration times contained in the path segment.

3. A path segment is explicitly revoked. Path revocation is covered in detail
in Section 7.3.

Using a least-frequently-used replacement strategy ensures that the most
frequently requested path segments are kept in a path server’s cache. This is
especially important for down-segments toward popular destinations or core-
segments frequently involved in transit. Similarly, end hosts also cache obtained
path segments.

7.2.4 Path-Segment Authenticity

Path segments are signed in the same way as beacons, i.e., by every AS on the
path. Each path server (and end host) can verify a path segment regardless of its
origin. By tying together path segments with information required for their veri-
fication (i.e., certificates and TRCs), we decouple verification of a path segment
from the path server that delivers the segment during path lookup. Such an
approach provides availability of the authenticity verification, as path segments
can be freely distributed throughout the entire path lookup infrastructure. The
details of the authentication process are described in Section 4.2.3.

7.2.5 Non-registered Path Segments

Public services typically want their servers to be reachable by as many hosts
as possible. In these cases, maintaining an up-to-date set of path segments
for that service’s AS achieves this goal. However, certain use cases require
services to be accessed only by authorized senders. While authorization can
berachievedratitherapplicationvlayer;idenial-of-service attacks may exhaust
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resources, preventing the data from reaching the authorization application or
overwhelming the application so that it cannot process all requests. In these
cases, it would be beneficial to make the path segment available only to specific
authorized senders, and not allow attackers or unauthorized parties to even
establish a connection to the service.

Non-registered (or hidden) path segments fulfill this need. Instead of regis-
tering the path segment to a path server, the path segment is communicated out
of band (e.g., in person, via secure messaging, or posted encrypted to a public
site) to authorized senders. Consequently, only authorized senders may then
begin to use that path segment for communication.

7.3 Secure Path Revocation <

In this section, we describe the SCION path revocation mechanism, which
addresses the problem of removing faulty or undesired path segments from the
path infrastructure. In SCION, path segments must be revoked, i.e., removed
from path servers, in two cases:

1. due to changes in routing policies, i.e., proactively;
2. due to a link failure on the path, i.e., reactively.

The first case is usually not time-critical and can be addressed through
expiration timestamps on path segments in conjunction with ASes ceasing to
advertise these paths. An AS can always unregister its previously registered
path segments in the core path server, which prevents end hosts in ASes that
do not have a cached copy of the path from using it. However, cached copies
will still be usable for as long as the path is valid. We assume that an AS is
committed to a path segment it registers for the entirety of its lifetime.

For reactively revoking a path segment due to a link failure on the path, time
plays a critical role; the faster a faulty path segment can be revoked, the fewer
sources will try to make use of the faulty path segment and the quicker the
system will converge to a state without stale (non-functioning) path segments.
Thus, a path revocation system needs to be tuned to rapidly and efficiently
remove faulty path segments.

Efficiency and scalability. To ensure scalability and also to prevent denial-
of-service (DoS) attacks by malicious entities in the network infrastructure, it is
critical to achieve low computational, storage, and bandwidth overhead. Thus,
a revocation must not require involved network elements to keep an excessive
amount of state or to generate a large number of additional messages within the
network.
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Additionally, a revocation must be efficiently verifiable to prevent overwhelm-
ing verifiers through many (possibly forged) revocations. Finally, revocations
should be short, to minimize communication overhead.

Security. Path revocation is designed to remove a path segment from the
path infrastructure. Therefore, the system needs to prevent unauthorized or
malicious parties from revoking path segments. The system must thus ensure
that revocations are authentic, i.e., only the operator of an interface should be
able to revoke that interface.

Finally, it must be impossible to replay a recorded revocation with the effect
of removing a valid path segment (resistance against replay attacks).

7.3.1 Design

The main task of the revocation system is to rapidly remove cached copies
of path segments containing a failed link. The first design decision to make
is whether the revocation system should be active or passive. An example of
a passive design is the time-to-live (TTL)-based expiration of cached DNS
records [178]. While simple in design, passive revocation suffers from con-
flicting goals: on the one hand, path segments should be cached for as long as
possible, but on the other hand, failed path segments should be removed from
caches as quickly as possible. TTL-based revocation cannot simultaneously
achieve both goals.

With active revocation, long path segment retention can be achieved, while
also enabling fast removal of failed path segments. The main design decision
for active revocation lies in a suitable choice for revocation dissemination. In
the following, we describe the salient features of SCION’s path revocation
system.

Our design is motivated by the observation that a cached but unused path
segment does not have to be removed, because a faulty path segment will
be detected with usage, which can trigger removal. While using a stale path
segment leads to some overhead to detect the failure and recover from it,
immediately removing it from path servers is not critical. We can exploit this to
create a system with a loose consistency requirement, i.e., as long as a failed
path segment is not used, then there is no point in expending effort to revoke
it, but once a path segment is used, then the system revokes it, thus benefiting
others who may want to use it at a later point.

Another design aspect is the granularity of revocations. Our revocation
scheme works on the granularity of interfaces. To revoke a path segment, an
AS simply revokes the interface corresponding to the failed link, i.e., its end
of the link. This way, only a single revocation message is needed to revoke all
path segments that contain a failed interface.
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Figure 7.4: Overview of the path revocation system.

Figure 7.4 depicts an overview of SCION’s revocation system:

Whenever an AS needs to revoke an interface, the beacon server of
that AS informs each border router about the revoked interface; thus a
border router is always aware of all the revoked interfaces within its AS.
Additionally, the beacon server sends the revocation to a core path server
in its ISD (green arrows in the orange ISD).

Whenever a packet with a forwarding path containing the interface ID
of a revoked interface arrives at a border router, the border router issues
a SCION control message protocol (SCMP) packet containing the revo-
cation that is sent back to the sender along the reverse direction of the
forwarding path contained in the packet header (blue arrows).

The ingress border router in the AS of the source forwards the SCMP
packet to the source, and additionally to the local path server. The local
path server verifies and processes the revocation, and forwards it to a core
path server in its ISD. That core path server then forwards the revocation
to all other core path servers in the ISD (green arrows in the yellow ISD).
If the SCMP packet travels downstream (away from the ISD Core),
then border routers in that ISD downstream of the failed link send an
additional SCMP packet to the local beacon server (AS I and AS B). This
is to prevent beacon servers from disseminating beacons containing a
failed link.

End hosts receiving a revocation can verify it and immediately switch to
(or request) an alternative path.
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Algorithm 2 Initiate revocation at a beacon server

1:
2
3
4
5:
6:
7,
8
9
0:

1

procedure ISSUEREVOCATION(/F)

revMsg < BuildRevMsg(/F;)

for all router € BorderRouters do
SendTo(router, revMsg)

end for

SendTo(CPS, revMsg)

RegisterNewDownSegments (CPS)

SendTo(LPS, revMsg)

RegisterNewUpSegments (LPS)

end procedure

» To meet our security goal, we propose a lightweight and efficient authenti-

cation scheme that allows each AS to prove to anyone in the network that
it is the owner of the revoked interface and thus authorized to perform
the revocation. Replayability of revocations is limited to 10 seconds, the
lifetime of a revocation. (More details will be given in Section 7.3.3.)

Due to the short lifetime of revocations, each network element can keep
a map of all processed revocations and thus it can easily drop duplicates.
Each entry in this map needs be kept for at most 10 seconds.

7.3.2 Processing of Revocations

Beacon Servers

The beacon server keeps track of the state of all interfaces within its AS through
periodic keep-alive messages sent between adjacent border routers. If a link or
an interface to a neighboring AS fails, the beacon server initiates the following
revocation process (Algorithm 2):

1.

2.

For a failed interface IF,, the beacon server creates a revocation message
by calling the build revocation message algorithm (Algorithm 5).
The beacon server then sends a status update to all border routers in the

AS, informing them about the status of the interface and installing the
revocation message to revoke the interface.

It then sends the revocation to the core path servers in its ISD together
with a new set of down-segments.

Finally, the beacon server sends the revocation together with a new set of
up-segments to the local path server.

A beacon server that receives a revocation for an upstream interface checks
whether any of its currently registered paths are affected, and if so, immediately
registers a new set of up/down-segments with the local and core path servers.
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Algorithm 3 Process revocation at a border router

1: procedure SENDREVOCATION(pkt, IF;)

2 revMsg < GetRevMsg(IF;)

3 SCMPPacket < SCMPPacket(this.addr, pkt.src, ReversedPath(pkt))
4 SCMPPacket.payload — revMsg

5: NormalForward(SCMPPacket)
6

7

8

: end procedure

: procedure FORWARDREVOCATION(rev)

NormalForward(rev)

9: if FromLocalAS(rev) or AlreadySeen(rev) then
10: return
11: end if
12: if ToLocalAS(rev) then

13: ForwardTo(LPS, rev)
14: end if
15: if rev.ISD == this.ISD and FromUpstream(rev) then
16: ForwardTo(BS, rev)
17: end if

18: AlreadySeen(rev) < True
19: end procedure

Border Routers

Border routers perform different functions with respect to revocation processing,
depending on their position on the path of the packet that triggers a revocation
message (Algorithm 3):

« If the current or next hop interface of the packet’s forwarding path is
revoked within the local AS, a border router sends an SCMP packet
containing the corresponding revocation back to the source host. To that
end, a border router reverses the path of the packet that triggered the
revocation message.

* An ingress border router in the AS of the source host forwards the SCMP
revocation packet to the source host, and also sends it to the local path
server.

* An ingress border router downstream of the failed link forwards the
SCMP revocation packet toward the destination and also sends it to the
local beacon server. This prevents beacon servers from disseminating
beacons containing failed links.

* If none of these conditions apply, a border router simply forwards a
revocation message along the path in its header.
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Algorithm 4 Process revocation at a non-core path server

1: procedure PROCESSREVOCATION(rev)

2 if AlreadySeen(rev) then

3 return

4 end if

5: X, P,Ry_,, Ry, < ExtractProof(rev)

6 for all segment € {seg € PathSegments|rev.IFy € seg} do
7 revIoken «— segment[rev.IFy].token

8: if Verify(x, P, Ry, ,, Ry,
9: Remove(segment)

10: end if

11: end for

12: if rev.src # BS and rev.ISD # sel f.ISD then

1 revloken) then

13: SendTo(CPS, rev)
14: end if
15: AlreadySeen(rev) < True

16: end procedure

Non-core Path Servers

Non-core path servers either receive revocations from the local beacon server or
from a border router if the path server is in the same AS as the source host that
triggered the SCMP revocation packet. The revocation message is processed as
follows (Algorithm 4):

1. The path server first checks whether it has already received this revocation
and if so, stops processing it.

2. The path server then verifies the revocation against the token included
in path segments that contain the revoked interface (using Algorithm 6),
to ensure that it was issued by the interface’s owner. If the verification
succeeds, the path server removes all path segments that contain the
revoked interface. More details on revocation authentication can be
found in Section 7.3.3.

3. Finally, the local path server forwards the revocation to a core path server
if the revocation message originated from a remote ISD.

Core Path Servers

Core path servers receive revocations either from a non-core path server down-
stream, from a border router if the path server is in the same AS as the source
host that triggered the SCMP revocation packet, or from another core path
server in the same ISD. In any case, core path servers process the revocation in
the same way as non-core path servers (Algorithm 4). Additionally, a core path
server also forwards the revocation to all other core path servers in the same
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(IFy,tp,m12) (IFy, ty, 1139)

Figure 7.5: A hash tree for two interfaces with T = [t1,1,13,1]. Squares contain
the triples (IF,t;,n.;). To revoke IF, in epoch t,, an AS reveals
(IF>,12,n5) (red square) along with the green nodes.

ISD, unless it received the revocation from another core path server in the same
ISD.

End Hosts

Much like the path servers, end hosts can perform the Verify() procedure and
if it succeeds they remove all path segments containing the revoked interface
from their cache. Revocations received by an end host in response to a sent
packet immediately allow packet retransmission on a different path without
having to wait for a timeout.

7.3.3 Revocation Authentication

To efficiently authenticate revocations we designed an authentication mecha-
nism based on hash trees [174]. The idea is the following: given a time interval
T, divide T into m equal, smaller intervals t1,1,,...,1,,. Each AS constructs a
hash tree, whose leaves are of the form:

H(IF | ]| i),

where IF, is the interface identifier, ¢#; is a time interval of T, and n,; is a secret
nonce. For each interface /F, of an AS, there are m such leaves, i.e., in total the
hash tree contains n - m leaves, where n denotes the total number of interfaces
of an AS. Such a tree is only valid within time interval 7. Figure 7.5 shows a
graphical representation of such a tree.

With.the authentic root Rz distributed to verifiers (see below), an AS can
revoke an interface /F; for a given epoch ; by revealing x = (IF, 1;,ny ;) together
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Rt, 10,4

T4 T; Tita

Figure 7.6: Hash trees for a time interval 7; are connected by introducing a
new root node that connects two subsequent trees. To revoke /F; at
epoch t; € T;, an AS reveals (IF, || t; |, ;) together with the labels
of the nodes of the hash tree rooted in Ry7; and the roots of the hash
trees for 7;_y and T; 1, Ry,_, resp. Ry, (red path).

with the hash values of the siblings of the nodes on the path from #(x) to the
root Ry (see Figure 7.5 and Algorithm 5, lines 4-11). Let P be this set of hash
values. Using x and P, a verifier can compute R’ (Algorithm 6, lines 5-12). To
verify a revocation, a verifier checks the freshness of the revocation by executing

VerifyEpoch (Algorithm 7) and then ensures R/, Z R7. An expired revocation
message must be ignored to prevent replays of old revocations. When verifying
the freshness of the revocation, a tolerance € is added to account for imperfectly
synchronized clocks as well as the propagation time of revocations.

Connecting Hash Trees

A hash tree, as described above, is only valid for time interval T, but clearly,
revocation authentication needs to be possible over an arbitrary amount of time.
To achieve this property, we consider time as an infinite series of time intervals
T;. To each T; we associate a corresponding hash tree with root R7,. To achieve
continuity between the time ranges, we propose connecting two consecutive
trees with roots Rr;, Rz, , by making them the left and right subtree of a new
root node Ry 7., , (see Figure 7.6).

With this enhancement, we can present our complete scheme. During bea-
coning, an AS adds Ry, 7;,, (the revocation token) to the PCB, assuming the
path expires in 7;11. Selecting T to be at least as long as the longest lifetime of
a PCB, then in epoch t; € T;, there exist only PCBs containing either Ry, | 1, or
Rz, 1., Thus, to revoke an interface IF; at 7} € T;, the AS reveals (IF||1||n} ;)
together with the hash values of the nodes of the hash tree rooted in Rz, and the
roots of the hash trees for 7;_; and T; 11, i.e., Ry,_, and Ry, .
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Algorithm 5 Building a revocation message.

1: procedure BUILDREVMSG(/Fy, Ry, ,, RT,.H)
2 e (IR ny, )

3 m «— H(x)
4: for [ — 1..height(T;) do

5: P — P | sibling(m)

6: if IsLeftSibling(m) then
7 m «— H(m || sibling(im))
8: else

o: m «— H(sibling(m) || m)
10: end if

11: end for
12: return (x, P, Ry,_,, Ry )

13: end procedure

Verification proceeds similarly. First, a verifier checks the freshness of the
revocation. Then, the verifier computes R’Ti and checks whether:

,

H(RTifl ||R/T,) iRT;‘—lJ;‘ or
/ ?

H(R7 || Ry, ) = R, 14 -

Note that an AS, at any point t;'- € T;, only needs to store the hash trees with
roots Ry; and Ry, . From the previous hash tree, only the root R7,_, needs to be
stored.

To provide a conservative estimate of the size of a revocation message, we
set T = 24 h and each epoch t;'- = 10 s. Thus there are m = 24-60-6 = §,640
epochs in T. Additionally, we set n = 10,000, which is considerably more
than the maximum number of links to neighboring ASes for any AS in today’s
Internet [77]. In total, the entire hash tree contains about 86 million leaves and
thus has a height of 28, i.e., a revocation message has to include an additional
28 hash values to enable verification.

7.4 Failure Resilience and Service Discovery

The path infrastructure is a fundamental piece of the SCION architecture whose
availability is crucial for basic communication. In this section, we describe how
we achieve high availability for services that are part of the path infrastructure.
We note that ASes can use other techniques than the ones we describe here, but
the default strategies below are sufficient to provide high availability.

The control-plane infrastructure is based on a consistency service that pro-
vides the following primitives:
ssawdistributed-databasesthatzallows entities connected to the service to
share information,
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Algorithm 6 Verifying a revocation message.

1:
2
3
4:
5:
6.
7
8

9:
10:
11:
12:
13:
14:
15:
16:

procedure VERIFY(x, P, R, Ry, y)

if not VerifyEpoch(x) then
return False
end if
Ry — H(x)
for pin P do
if IsleftSibling(p) then
Ry, < H(p|R7)
else
Ry — H(R7 | p)
end if
end for
if H(Rr_, HR’TI,) ==yor ’H(R/T[ | R
return True
end if
return False

T..,) ==y then

17: end procedure

Algorithm 7 Verifying an epoch.

1
2
3
4:
5:
6
7
8

: procedure VERIFYEPOCH(x)

e «—CurrentEpoch()
if e == x.t} or

(e == x.tj- — 1 and TimeSinceEpoch() < €) then

return True
end if
return False

: end procedure

* aleader election to elect an entity that acts as a master, and
* a group membership primitive to discover which instances are currently
alive.

In the current SCION implementation, Apache ZooKeeper [11] provides the
above primitives, though any software providing the three primitives listed

above can be used to implement the consistency service.

7.4.1 Beacon Service

The path exploration process within an AS relies on the availability of a beacon
server. In order to prevent a beacon server being a single point of failure, the

AS can run multiple, coordinated beacon server instances.

All beacon server instances in an AS connect to the consistency service and
appear as group members. An instance that gets disconnected from the service
for any reason will no longer appear as a group member. Upon joining, each
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instance tries to become a leader, which makes the instance a master beacon
server until the leader terminates (e.g., due to failure or shutdown). When the
leader terminates a new election process takes place.

When a border router receives a new PCB, the router finds a running beacon
server instance (as described in Section 7.4.7) and forwards the PCB to that
instance. The beacon server instance can then share the PCB with the other
instances by writing the PCB into a specified location of the distributed database.
All beacon server instances watch this location and copy any new PCBs into
their caches. Every new beacon server instance populates its cache with PCBs
from the distributed database.

Once per propagation and registration period, the master beacon server
initiates the beaconing and path-segment registration processes, respectively.
If the master beacon server fails, a new master is elected and the new master
starts the beaconing and path registration.

Although we assume that network partitions in an AS or failures of the
consistency service are unlikely, the beacon servers can also handle these
failures. If a beacon server instance is disconnected from the consistency service,
it will initiate the beaconing and the registration at a planned interval. While
this approach may cause several beacon server instances to simultaneously
propagate PCBs, it guarantees that the beaconing and path-segment registration
processes can continue even under catastrophic failures.

7.4.2 Path Service in Core ASes

We now describe how we achieve high availability for the path service in core
ASes. Similarly to beacon servers, we deploy multiple coordinated instances
of path servers that elect a master (via leader election) and share a distributed
database containing registered down- and core-segments. However, due to load,
the core AS path servers cannot replicate all registered path segments as beacon
servers do with PCBs. Despite this limitation, each core AS must be able to
respond to queries for down-segments. We thus propose a two-level replication
scheme to meet these requirements: non-master path servers cache registered
down-segments and replicate them only with a master path server (that caches
all seen down-segments).

Down-Segment Registration

When an AS registers a down-segment at a core AS with replicated path servers,
registration proceeds as follows:

1. A down-segment is sent to a running path server instance as determined
by the group membership protocol. The instance is selected randomly by
the last border router.as.described in Section 7.4.7.

2. The path server instance verifies and registers the down-segment.
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3. If the path server instance is not a master, it forwards the segment to the
master path server instance of that AS.

4. The path server instance forwards the path segment to all other ISD core
ASes. Each AS processes the segment in the same manner.

Each ISD core AS thus has a master path server instance that keeps all registered
segments, and a copy of the database is also distributed among the running path
server instances in the AS.

Down-Segment Request

A down-segment request is handled differently depending on the destination’s
location. Regardless of the destination’s location, a path server instance in an
AS is randomly selected as described in Section 7.4.7.

If the destination is within the local ISD then the request is handled as
follows:

* If a down-segment to the requested destination exists in the path server’s
local cache, the server responds with the segment.

* If no down-segment to the destination exists in the path server’s local
cache and the server is not the master instance, the path server instance
asks the master instance of the AS, which responds to the query. The
answer is cached by the non-master server and used to serve the initial
request.

If the requested destination is in a remote ISD, then the request is handled as
above, except the path server forwards the request to a path server in the remote
ISD rather than to its local master path server instance. The remote path server
then processes the requests using the above steps.

Core-Segment Registration and Request

Core-segments are only registered with path server instances within a core AS
and are not sent to other ASes. The core-segments are replicated among path
server instances based on their destination. In particular, if a core-segment’s
destination is an AS in the local ISD, then the segment is stored in the distributed
database where each path server instance within that core AS can access it. If a
core-segment’s destination is in a remote ISD, the core-segment is cached at
the path server and forwarded to the master path server instance of the core AS.

A core AS’s path server instance handles a path request for a core AS (and
thus for a core-segment) as follows:
¢ If a core-segment for the AS exists in the local cache, return it.
* If not, and the target AS is from the local ISD, wait for the appropriate
core-segments (timing out after a waiting period).
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* If the target AS is within a remote ISD, query the local master path server
for a core-segment, timing out after a set waiting period.

Failure of a Core Master Path Server

When a core master path server fails, the following procedure is executed:

* A new master path server is elected from the group members (i.e., from
all active path servers within the AS).
* All non-master path servers from the AS send the following to the new
master:
— their locally cached down-segments (i.e., down-segments from the
local ISD), and
— their locally cached core-segments to ASes in remote ISDs.

For efficiency reasons, the number of replicated paths per destination AS
is limited. Note that the distributed database stores all core-segments that
originated within the local ISD, so there is no need to send those path segments
to the new master.

7.4.3 Path Service in Non-core ASes

In non-core ASes, path server instances join the consistency service and access
the distributed database, but do not participate in master election.

Up-segment registrations are handled by all path servers in a non-core AS
and are fully replicated through the distributed database. Since up-segments
are accessible to all path servers in a non-core AS, a path request can be
handled by any path server. By default, paths to remote ASes (core- and down-
segments) are only cached by path servers that have received them (i.e., there is
no replication of these path segments for scalability reasons).

If a path server is disconnected from the consistency service, it serves the
requests as usual, but for all new up-segments obtained, an attempt is made
to synchronize them via direct communication with all remaining path servers
(known from the discovery service — see details in Section 7.4.6).

7.4.4 Certificate Service

The certificate service in both core and non-core ASes has a similar architecture
for high availability to that of the path service in non-core ASes, in that the
instances do not participate in master election. New TRCs and certificates
are replicated across all instances via the distributed database, providing all
servers with the same view of TRCs and certificates. Thus each certificate
server instance can serve TRC and certificate requests independently.
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If a certificate server is disconnected from the consistency service, it serves
the requests as usual, but attempts to replicate new TRCs and certificates via
direct communication with other certificate servers.

7.4.5 Inactive Interfaces

PCBs (through their AS entries) should reflect an accurate state of the network
within an AS, and thus interfaces that are down should not be added to PCBs.
To achieve this accuracy, every AS implements an interface failure detection
mechanism. In a nutshell, every border router periodically sends a keep-alive
message with the respective interface identifier to its neighboring router, which
propagates this message to all the beacon servers in its AS. The interval between
these keep-alive messages is known in advance, allowing an AS to detect that it
has missed a keep-alive message. After a threshold number of missed messages,
a master beacon server can consider the interface inactive; such interfaces
will no longer be added to new PCBs. An AS can also revoke an inactive
interface from all paths that contain information on the interface, as described
in Section 7.3.

7.4.6 Service Discovery

Both infrastructure elements and end hosts need to be able to find instances of
services they require for their operation. To facilitate this, a SCION AS runs
a discovery service. The discovery service gathers information from several
sources and exposes it in a standard format in a standardized set of URLs
(presented in Section 16.3 on Page 374).

The discovery service exports two views of the information: a full view
intended for infrastructure servers and routers, and a reduced view for end hosts.
The AS can make a policy decision on which part of the infrastructure is visible
in the reduced view, e.g., the entries for beacon servers may be excluded.

The main source of information for the discovery service is the consistency
service employed by the AS. The discovery service connects to the consistency
service and reads the membership information created by the group membership
primitive. In this way, the discovery service obtains the list of instances of a
given service — IP addresses and ports — and updates the exported information
accordingly. If the consistency service detects that a server has failed, it is
removed from the corresponding group. Since this change is visible to the
discovery service, it can then update the dynamic view it exports.

Additional information, such as the addresses and ports of border routers
and the MTUs of links, is configured statically for the discovery service, since
this information will rarely change and is typically gathered from additional
configuration files.
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Finally, the discovery service augments all the exported records with a
timestamp of the last update. This timestamp can vary between services, but not
service instances. That is, there is one timestamp for all listed certificate servers,
another for all path servers and so on. The discovery service also exports a TTL
for the information it provides.

As a fallback, the discovery service exports static versions of both the full
and reduced views. This information is exported on a different path of the URL,
so clients have discretion in when to switch between the dynamic and static
views. The static view will typically have a longer TTL than the dynamically
generated view.

All views (static or dynamic, full or reduced) are signed by the discovery
service with the AS’s private key (the same key that is used for signing control-
plane messages). The minimal information that end hosts have to be provided
with is an address of a discovery server.

If an end host discovers that for a given service there are no instances listed
in the dynamic view, it can choose to use the content of the static view. If both
are empty, it can either fall back to a copy it has cached earlier, or use a static
configuration that was provided by other means. It can also choose to switch to
a different discovery service instance it knows about. Note that the information
provided by a discovery service will typically include all the discovery service
instances an AS wants to be used by end hosts or infrastructure elements.

If a discovery service instance has stale information (i.e., the TTL has passed
with no updates), it must still export this stale information. The decision what
to do with stale information is entirely up to the client.

7.4.7 Service Instance Selection

In order to facilitate control-plane anycast communication, SCION introduces a
dedicated service-addressing scheme. For instance, a beacon server that wishes
to register segments with a remote AS’s path service does not have to know the
actual address of a remote path server. Instead, the SCION service address of
the path service suffices, so that the SCION border router in the remote AS can
select an alive instance of the service to deliver the packet to.

To implement this primitive, all border routers, through the discovery service,
keep lists of alive instances for all supported services within their ASes. These
lists are frequently updated by the discovery service. When a border router
detects a packet addressed to a supported service, an instance of the service is
selected pseudo-randomly, and the packet is sent to the instance. To support
connectionless protocols, the selection process has to be deterministic, such
that two consecutive packets sent from the same application to the same service
are delivered to the same instance of that service.

3n the case of TCP connections, only the first packet (i.e., SYN) is addressed to a given service.
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7.5 AS-Level Anycast Service

SCION deploys anycast as a standard communication model for control-plane
requests. In essence, the service anycast system provides a service-oriented
communication infrastructure, enabling a request to be routed to the nearest
server. Due to the hierarchical nature of caching infrastructures, service lookups
should progress through subsequent servers at increasing levels in the hierarchy.
SCION intrinsically supports this primitive by embedding an up-segment in
the anycast request, further enabling the requester to specify which of the
ASes on the path to the core should invoke the anycast primitive to establish
whether an internal service can answer the request. This flexibility endows
the SCION service infrastructure with powerful primitives to implement a
variety of services, without introducing dedicated service-oriented stacks and
layers [186,256]. In this section, we describe this infrastructure in more detail.

By default, all control-plane requests are sent within a requested AS as
anycast packets through a SCION service destination address. Within an AS,
server instances of a given service are discovered and tracked by the consistency
service, catalogued by the discovery service, and exported to all SCION border
routers through a server list (see the previous section). Moreover, SCION
introduces a separate anycast mechanism that works at the AS level. It allows
an anycast request to a service’s server to be sent to any intermediate AS on a
path to the ISD core.

Figure 7.7 presents several examples of SCION anycast requests. Each
service that is accessible via anycast has a dedicated anycast address that
is globally registered via an organization like TANA. Additionally, service
discovery (or anycast routing) has to be implemented within an AS (as described
in Section 7.4.7).

Case 1 in Figure 7.7 is the standard request to a server in the core (e.g., a path
request). The requester, using an up-segment to the ISD core, sends the request,
which traverses the ASes toward the core. The last border router on the path
sends an anycast packet to a pseudo-randomly selected server that implements
the service. The server responds to the requester using the reversed path from
the request packet.

For some services it is preferred (mainly for efficiency reasons) to send a re-
quest to servers within intermediate ASes instead of contacting ISD core servers,
to benefit from hierarchical caching. To satisfy this requirement, SCION intro-
duces service anycast that can be targeted to specific intermediate ASes. The
mechanism is implemented by a dedicated extension (see Page 354) and can
be enabled by an end host that wishes to request intermediate servers. The end
host simply marks a hop field that corresponds to a requested (intermediate) AS
as an anycast hop field. The bit informs the border router of the selected AS
that this packet should be forwarded to the service’s server within the AS.
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Figure 7.7: Examples of service anycast, where solid lines indicate a request
and dashed lines indicate a response. Case 1 shows a request to
a server in the ISD core. Cases 2a and 2b demonstrate a request
where either a server inside AS B, or a server in the ISD core is
requested to respond, respectively. In Case 2a, the server in AS
B responds directly. In Case 2b, the server in AS B forwards the
request to the server in the core. The path header diagram indicates
the HFs that are marked as anycast; in this example only the HF
corresponding to AS B is set as anycast in Cases 2a and 2b.

After the packet is received by the server, it can handle the request in several
ways. The processing logic depends on the contacted service, but we distinguish
the cases where the intermediate contacted service’s server

* can serve the request, and respond to the requester reversing the path
(Case 2a in Figure 7.7);

 cannot serve the request, and passes the request upstream sending it to
the next border router (Case 2b in Figure 7.7);

* can serve the request partially, and respond to the request in the packet
payload, but passes the request upstream (Case 2b in Figure 7.7).

Only the hop field that is processed by the ingress router of the AS that
should handle the anycast is marked as anycast.

The SCION AS-level anycast service enables design and implementation of
services that leverage a hierarchical caching infrastructure to minimize latency
(e.g., content distribution), or services that need to perform an action by every
AS on.the path.(e.g..-on-path.-key agreement). Additionally, through the beacon
extension mechanism ASes can announce which services they support.
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7.6 SCION Control Message Protocol (SCMP) <

The SCION Control Message Protocol (SCMP) is analogous to ICMP in the
current Internet and provides the following functionalities:

* Network diagnostic: allows debugging tools such as the SCION equiva-
lents of ping or traceroute to be built.

* Error messages: signal problems with packet processing or inform end
hosts about network-layer problems.

The SCMP protocol is the first instance of a secure control message protocol
in a network infrastructure we are aware of. The main challenges include
scalable Internet-wide key distribution and highly efficient generation of au-
thentication information at line speed. In this section, we describe the design,
goals, and use cases of SCMP. Low-level details, such as packet headers, are
presented in Section 15.6.

7.6.1 Goals and Design

SCMP must be flexible as it is used for many purposes in various applications.
For instance, (a) some SCMP messages are processed by intermediate routers
on the path, while other messages are end-to-end, (b) there are various types
of SCMP messages (for various types of diagnostics or network errors), and
(c) the messages can influence different parts of the SCION stack (such as the
transport protocol or the beacon selection mechanism).

SCMP packets can carry either error messages or non-error messages. One
basic rule of SCMP is that an error packet should never generate another SCMP
packet (to prevent loops), thus border routers must be able to efficiently check
whether a packet is an SCMP error message. To this end, each SCMP packet
contains a mandatory and easily accessible SCMP extension header (see details
in Section 15.6.1 on Page 363). The extension header indicates whether the
packet should be processed by every router on the path (i.e., hop-by-hop flag),
and whether the packet contains an SCMP error message (i.e., error flag).

An SCMP packet has a simple SCMP layer-4 header that contains the length
of the carried SCMP message, describes its class and type, and contains the
message creation timestamp.

Finally, SCMP packets contain an SCMP payload, which carries the ac-
tual content of the message, necessary for interpreting a given message class
and type specified in the SCMP layer-4 header. In particular, it can contain
information about the SCION packet that triggered the SCMP message.

SCMP is implemented by network devices and end-host stacks. Usually,
SCMP packets are generated in response to a SCION data packet (that triggered
an SCMP message). As the SCMP packet has to be delivered back to the
initiator, it contains the reversed path and address from the initial packet. SCMP
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packets also contain information to identify the source application (such as a
layer-4 header).

7.6.2 Supported Message Classes and Types

SCMP supports messages of the following generic classes:

* Forwarding: errors that can happen during packet forwarding or delivery.
This class contains message types that represent problems such as end-
host unreachability (e.g., unreachable ports), network issues (e.g., MTU
exceeded), or administrative decisions (e.g., destination denied).

* SCION common header: errors that can be found during basic packet
parsing; for instance, types such as wrong packet or header length, incor-
rect path pointers, or invalid address type.

* Path: errors related to the processing of the packet’s forwarding path.
This class can signal problems such as expired hop field, revoked inter-
face, invalid interface, or wrong MAC.

* Extension: errors that can happen while processing SCION packet ex-
tensions (e.g., unsupported extension or too many extensions).

* General: messages that do not fall into any other class; for instance,
types such as echo request/reply and traceroute.*

Besides generic messages, SCMP is also able to handle specific errors of SCION
extensions such as SIBRA (see Section 15.6.3 on Page 365).

7.6.3 Authentication

All SCMP packets are authenticated, thus it is infeasible to perform attacks
analogous to ICMP-based attacks on TCP/IP [99]. To the best of our knowledge,
SCMP is the first control message protocol to provide an authentication property.

SCION provides two means of SCMP authentication, using symmetric or
asymmetric cryptography. The methods can be used interchangeably, and they
both deploy a SCION packet security extension (see details in Section 15.1.4);
consequently, they protect the entire SCMP packet (not only its payload). The
symmetric authentication method uses AS-level keys to compute a message
authentication code (MAC) — while this approach offers high speed and scal-
ability, the disadvantage is that only the destination AS infrastructure or the
destination end host can verify the SCMP message. The asymmetric authenti-
cation mechanism is based on digital signatures, enabling any AS on the path
and end hosts to verify the SCMP message using the appropriate public key.

4SCION implements its own (more verbose) version of traceroute (note that in SCION the
forwarding topology is known by the source). Details can be found in Section 15.6.3 on
Page 365.
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However, the disadvantage of the asymmetric approach is the much slower
speed for signature generation.

SCION border routers take an active role in creating SCMP packet authenti-
cators. If an SCMP packet is generated by a border router, the router decides
which authentication approach to use. For SCMP packets generated by end
hosts, the end host decides how the packet is protected, by setting a chosen
option for the SCION packet security extension for this packet. The extension
indicates an authentication method, and — if asymmetric authentication is used
— the first border router on the packet’s path authenticates the packet.

Symmetric Authentication

The first method of SCMP authentication leverages symmetric cryptography.
In this method, SCMP packets are authenticated by the router that generates
them, and verified by the final SCION border router on the path (i.e., the border
router of the SCMP message’s receiver). Thus, this method provides AS-level
authentication, i.e., the receiving AS can be sure that the packet was indeed
created by the sending AS.

To efficiently create authenticated SCMP messages, we use the DRKey
protocol (as described in Section 12.5 on Page 291). The DRKey protocol
lets each router derive a symmetric key for the receiving AS or end host on
the fly. This symmetric key will be used to compute a MAC of the SCMP
message. Upon receiving an authenticated SCMP message, the receiver AS
has most likely already cached the verification key from a previously verified
SCMP message (originated from the sending AS). If the key is not available, the
receiving AS contacts the AS that generated the SCMP message and engages in
a key exchange protocol to fetch the current MAC key.

Border router

= =P Data packet (from source to destination)
<¢ - - - = SCMP packet (from border router B to source)

Figure 7.8: An example of SCMP authentication using MACs.
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Example. In Figure 7.8, the source host from AS A sends a data packet to the
destination in AS C, but forwarding fails (e.g., due to an expired hop field) at
the ingress interface of AS B’s border router BRg. The router creates an SCMP
message, which describes the problem and uses the source address and the path
from the original data packet to build an SCMP packet destined for the source.
When the packet is created, then BRp (a) derives a key for authenticating packets
destined for the source based on the key shared with AS A, (b) computes a
MAC over the packet and puts it into the packet, and (c) sends the SCMP packet
back to the source. If the source has a key shared with AS B, then the packet
is verified and (on success) delivered. If the key is not established, then the
certificate server is contacted and queried for the missing key. The certificate
server derives the requested key from a shared secret between AS A and AS B
and returns it to the source, which can then verify the SCMP packet.

The main advantage of this approach is that the authentication process is
extremely efficient. A router can efficiently derive a key for any AS and use it to
authenticate packets to this AS. Moreover, it does not need coordination within
an AS. If all routers within an AS share a secret SCMP key, each of them can
locally and efficiently re-create the SCMP key using the DRKey protocol for
any destination AS, without any additional communication and without storing
any per-AS state.

Asymmetric Authentication

The second form of authentication is based on digital signatures, which provides
a stronger security property than symmetric authentication — SCMP packets
are again authenticated by routers, but can be verified by any entity including
other on-path entities. However, even fast digital signature schemes are a
few orders of magnitude slower than symmetric primitives, and it would be
prohibitively inefficient to sign every SCMP packet created.

To remedy this problem, routers sign SCMP packets in batches. We use
Merkle hash trees (introduced in Section 4.4.1) to implement batch signing, as
this structure can be leveraged to efficiently prove that a leaf is part of the tree.

In this approach, every router has a queue of SCMP packets that need to be
authenticated using the asymmetric approach. The queue is limited by a fixed
size (e.g., it can store up to 4,096 packets) and is restricted by a time limit (e.g.,
the oldest packet in the queue can have been created at most 20 milliseconds
before). Specifically, when the size of the queue or its time limit is reached, the
router

1. builds the Merkle hash tree from the queued packets and signs the root of
the tree (using the same key used by beacon servers to authenticate PCBs
and path segments);
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Figure 7.9: Queue of the SCMP packets and the corresponding Merkle hash
tree.

2. creates a proof for each packet that belongs to the tree (see Figure 7.9,
where packet Py is authenticated via values h3, k12, hsg78, and the signed
root value /12345678);

3. extends each packet by its proof and sends all packets towards their
destination; and

4. clears the queue.

Although this scheme introduces higher overhead (proofs are longer than
MAC:s and the signing is less efficient than MAC creation) it has several advan-
tages. First, the packets can be verified by any entity, not only by the destination
AS or end host. Moreover, in this scheme, a source host does not need to
conduct any certificate or key lookup. The connection initiator that receives an
SCMP packet can immediately verify it, as it already has the required certificate
(the SCMP is sent via a forwarding path derived from the signed path segments).
If the certificate is missing, however, an end host can obtain it from its local
certificate server. Finally, the digital signature offers non-repudiation, a stronger
property than authentication offered by the MAC.

7.7 Time Synchronization

A standard assumption in security protocols is synchronized time. SCION
protocols also rely on this assumption. It is required that end hosts, servers,
and border routers are synchronized with at least second-level precision, al-
though some protocols may still work effectively when time is less precisely
synchronized.

To provide reliable time information, SCION proposes a time synchronization
framework as follows.
1. Each core AS runs a public time synchronization service that is accessible
to anyone inside its ISD.
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2. The core time synchronization services are stratum-1, i.e., they synchro-
nize with a stratum-0 source.

3. A non-core AS may run a time synchronization service, synchronized
with at least a stratum-1 source time (e.g., with its core time synchroniza-
tion service).

4. The infrastructure (servers and routers) of each AS is synchronized with
a time synchronization service from a core AS of its ISD.

5. Finally, end hosts should be synchronized with a core (or, if possible,
with a local) time synchronization service.

The time synchronization service has its own service address. As the default
protocol we propose the use of the Roughtime protocol [101]. Roughtime is a
novel protocol that provides higher security than currently deployed time syn-
chronization protocols (such as NTP [175]). Every response from a Roughtime
time server is signed, and the protocol allows misbehavior on the part of time
servers to be cryptographically proven.
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In this chapter, we discuss the SCION data plane. The purpose of the data plane
is to forward packets containing a SCION header. In SCION, inter-domain
forwarding decisions are encoded as a sequence of hop fields (HFs), which
encode AS-level hops augmented with ingress and egress interfaces.

Two important aspects of the SCION data plane are HF integrity (to prevent
forgery or alteration of HFs) and efficiency (to enable high-speed processing).
SCION provides a data plane that, despite its secure operation, is more efficient
than the current Internet infrastructure in several aspects: processing time,
router complexity, scalability to large networks, and energy consumption. In
particular, our investigations suggest that the cryptographic verification of HF
information can be made faster and more power-efficient than the longest-prefix
matching by current routers. (The power efficiency is discussed in Chapter 14.)
The absence of inter-domain routing tables improves scalability. Finally, the
implementation of cryptographic functions is well understood today, and can
lead to simple router implementations, helping to reduce the complexity of
current routers.

In this chapter, we discuss, among other things, the format of hop fields,
how path segments are combined to create forwarding paths, and how routers
compute a forwarding decision.
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8.1 Path Format

We start with the description of the data-plane path format used in SCION. A
path in this format is called a forwarding path and is placed directly into a
SCION header. It is considered by all SCION border routers on the path to
make forwarding decisions. To determine when to terminate the packet, border
routers check the destination address, which is also present in the SCION
header.

In contrast to the verbose control-plane path format (see Section 7.1), the
forwarding-path format includes minimal information that is needed to forward
packets. The rationale behind this design is that the path construction operation
is infrequent (compared to forwarding), and SCION’s control plane offers path
transparency so that end hosts obtain detailed path information when they
compose paths. However, only a fragment of this information is needed for
packet forwarding, which in turn is a very frequent operation and thus needs to
be highly efficient. Roughly speaking, a forwarding path is created once per
connection, and then it is processed by each border router on the path, for every
packet sent. For local communication (i.e., within an AS) a forwarding path is
not necessary (i.e., the path within the SCION header is empty).

A path in the data-plane format (i.e., a forwarding path) can be defined as a
concatenation of at most three lists of hop fields, which are extracted from an
up-segment, a core-segment, and a down-segment, respectively. Each list of hop
fields is optional, but hop fields have to be inserted into a packet in the correct
order (i.e., hop fields from a down-segment cannot precede hop fields from a
core- or up-segment, and core-segment hop fields cannot precede up-segment
hop fields). An example of how a forwarding path is constructed from path
segments is presented in Figure 8.1. The hop fields obtained from each path
segment are prepended with an info field corresponding to the path segment,
which includes the following information:

* atimestamp used for hop field freshness verification (each hop field of a
given path segment is verified against the corresponding timestamp);

* the identifier of the ISD that initiated the propagation of the path;

* the length of a given segment; and

* Flags;yr, which describes the type and the direction of the constructed
forwarding path with the following flags:

— UP: describes a forwarding path’s orientation (as forwarding paths
are bidirectional, the orientation information is required for correct
processing). When a packet travels in the direction of beacon
propagation, the flag is set to false; otherwise it is set to frue.

— SHORTCUT: describes whether the constructed forwarding path
is of non-core AS shortcut type. This flag is set when up- and
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